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1 Introduction and Complex Number

1 Introduction and Complex Number

1.1 Introduction toQuantum Computing

1.1.1 A Brief History

Quantum Mechanics as a branch of physics began with a set of scientific discoveries in the
late 19th Century and has been in active development ever since. Most people will point to the
1980s as the start of physicists actively looking at computing with quantum systems1:

• 1982: History of quantum computing starts with Richard Feynman lectures on the po-
tential advantages of computing with quantum systems.

• 1985: David Deutsch publishes the idea of a “universal quantum computer”.

• 1994: Peter Shor presents an algorithm that can efficiently find the factors of large num-
bers, significantly outperforming the best classical algorithm and theoretically putting
the underpinning of modern encryption at risk (referred to now as Shors algorithm).

• 1996: Lov Grover presents an algorithm for quantum computers that would be more
efficient for searching databases (referred to now as Groves search algorithm).

• 1996: Seth Lloyd proposes a quantum algorithmwhich can simulate quantum-mechanical
systems.

• 1999: D-Wave Systems founded by Geordie Rose.

• 2000: Eddie Farhi at MIT develops idea for adiabatic quantum computing.

• 2001: IBM and Stanford University publish the first implementation of Shors algorithm,
factoring 15 into its prime factors on a 7-qubit processor.

• 2010: D-Wave One: first commercial quantum computer released (annealer).

• 2016: IBM makes quantum computing available on IBM Cloud.

• 2019: Google claims the achievement of quantum supremacy. Quantum Supremacy was
termed by John Preskill in 2012 to describe when quantum systems could perform tasks
surpassing those in the classical world.

A more complete history comes from the quantumpedia2, where the development of quan-
tum computing is divided into five distinct periods (Figure 1.1):

1https://thequantuminsider.com/2020/05/26/history-of-quantum-computing/
2https://quantumpedia.uk/a-brief-history-of-quantum-computing-e0bbd05893d0
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1 Introduction and Complex Number

Figure 1.1: A Brief History of Quantum Computing (Copyright: Quantumpedia)

• 1900−1980: The Theoretical Foundations of Quantum Computing.

• 1980−1994: The Emergence of Quantum Computing.

• 1994−2000: The Development of Quantum Algorithms.

• 2000−2021: The Race to Build Quantum Computers.

• 2021−present: Ongoing Advancements.

1.1.2 Prof. Andrew Chi-Chih Yao’s Talk in Micius Salon

Prof. Yao gave a talk entitled “The Advent of Quantum Computing” in Micius Salon in
20183. Here are some key points:

• Two key topics: (1) what is the nature of quantum computer?; and (2) where does quan-
tum computer gets its power from?

• The particle-wave duality plays the starting role in making it possible for us to do quan-
tum computing faster than classic computing under certain circumstances

• Richard Feynman’s question: can quantum physics be simulated efficiently? Answer:
unlikely by a classic computer, but hopefully by a quantum computer.

• The comparison of classic computer and quantum computers (Figure 1.2). Classic com-
putersmanipulate classic bits 0110 · · · with Boolean operations in {0, 1}𝑛 , while quantum
computers manipulate quantum bits |0101 · · ·⟩ with “rotations” in C2𝑛

3https://www.bilibili.com/video/BV1Ct411Z7BQ/
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1 Introduction and Complex Number

Figure 1.2: The comparison of classic and quantum computers.

• The parallel superposition is brought by the fact that each quantum bit represents not
a single state, but a “probabilistic distribution” of states as shown in Figure 1.34.

(a) Schrodinger’s cat (b) Monkey King’s 72 changes (c) Naruto’s shadow clone jutsu

Figure 1.3: Some examples of parallel superposition.

• Parallelism could speed up computational tasks by parallel search.

1.2 Complex Numbers

The original motivation for the introduction of complex numbers was seeking solutions of
polynomial equations. Here is the simplest example:

𝑥2 + 1 = 0 (1.1)

Obviously, we cannot find its solution in the set of real numbers. To solve this problem, Math-
ematics introduces following definitions.

The fundamental reason we review complex numbers first in this course is that physics has
recognized that quantum mechanics must be complex in nature5 (Figure 1.4).
4Strictly speaking, Figure 1.3a is more accurate than the other two because states in quantum computing are
mutually exclusive rather than similar to each other.

5https://physics.aps.org/articles/v15/7
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1 Introduction and Complex Number

Figure 1.4: Quantum mechanics must be complex (source: APS)

1.2.1 Definitions

Definition 1.1 (Imaginary Number). An imaginary number is a real number multiplied by
the imaginary unit 𝑖 , which is defined by its property 𝑖2 = −16 or 𝑖 =

√
−1.

Definition 1.2 (Complex Number). A complex number is a hybrid entity which adds a real
number with an imaginary number, for instance,

𝑐 = 𝑎 + 𝑏 × 𝑖 = 𝑎 + 𝑏𝑖 (1.2)

where 𝑎, 𝑏 are two real numbers, 𝑎 is called the real part of 𝑐 , whereas 𝑏 is its imaginary part. The
set of all complex numbers will be denoted as C. When the × is understood, we shall omit it.

Proposition 1 (Fundamental Theorem of Algebra). Every polynomial equation of one vari-
able with complex coefficients has a complex solution.

1.2.2 The Algebra of Complex Numbers

Definition 1.3 (Ordered Pair Representation). Ordered pair representation defines a complex
number as an ordered pair of reals:

𝑐 = 𝑎 + 𝑏𝑖7 ↦→ (𝑎, 𝑏) (1.3)

6Thanks for Ziyi Ding’s correction of 1→ −1.
7Thanks for Xin Shu’s correction of 𝑎 + 𝑏 → 𝑎 + 𝑏𝑖 .
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1 Introduction and Complex Number

Hence, ordinary real numbers can be identified with pairs (𝑎, 0)

𝑎 ↦→ (𝑎, 0)8 (1.4)

whereas imaginary numbers can be identified with pairs (0, 𝑏). In particular,

𝑖 ↦→ (0, 1) (1.5)

The four arithmetic operations between two complex numbers can be expressed as:

• Addition:
𝑐1 + 𝑐2 = (𝑎1, 𝑏1) + (𝑎2, 𝑏2) = (𝑎1 + 𝑎2, 𝑏1 + 𝑏2) (1.6)

• Subtraction:
𝑐1 − 𝑐2 = (𝑎1, 𝑏1) − (𝑎2, 𝑏2) = (𝑎1 − 𝑎2, 𝑏1 − 𝑏2) (1.7)

• Multiplication:

𝑐1 × 𝑐2 = (𝑎1, 𝑏1) × (𝑎2, 𝑏2) = (𝑎1𝑎2 − 𝑏1𝑏2, 𝑎1𝑏2 + 𝑎2𝑏1) (1.8)

• Subdivision:
𝑐1
𝑐2

=
(𝑎1, 𝑏1)
(𝑎2, 𝑏2)

=

(
𝑎1𝑎2 + 𝑏1𝑏2
𝑎22 + 𝑏22

,
𝑎2𝑏1 − 𝑎1𝑏2
𝑎22 + 𝑏22

)
(1.9)

With the addition and multiplication operations, we can re-write a complex number as

𝑐 = 𝑎 + 𝑏𝑖 = (𝑎,𝑏) = (𝑎, 0) + (0, 𝑏) = (𝑎, 0) + (𝑏, 0) × (0, 1) (1.10)

and from the denominator in the quotient formula in Eq.(1.9), we can define themodulus of a
complex number as:

|𝑐 | = |𝑎 + 𝑏𝑖 | = +
√
𝑎2 + 𝑏2 (1.11)

which has two useful properties:

• Property 1: ∀𝑐1, 𝑐2 ∈ C, |𝑐1 | |𝑐2 | = |𝑐1𝑐2 |.

• Property 2: ∀𝑐1, 𝑐2 ∈ C, |𝑐1 + 𝑐2 | ≤ |𝑐1 | + |𝑐2 |.

where the second property is also called triangular inequality of modulus operation.

Based on the above basic operations, it is easy to verify that complex numbers have the
following algebraic properties:

• Addition has an identity called additive identity: (0, 0), such that

∀𝑐 ∈ C, 𝑐 + (0, 0) = 𝑐 (1.12)

8Thanks for Yipan Wei’s correction of (𝑎,𝑏) → (𝑎, 0).
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1 Introduction and Complex Number

• Multiplication has an identity called multiplicative identity: (1, 0), such that

∀𝑐 ∈ C, 𝑐 × (1, 0) = (1, 0) × 𝑐 = 𝑐 (1.13)

• Both addition and multiplication are commutative:{
𝑐1 + 𝑐2 = 𝑐2 + 𝑐1
𝑐1 × 𝑐2 = 𝑐2 × 𝑐1

(1.14)

• Both addition and multiplication are associative:{
(𝑐1 + 𝑐2) + 𝑐3 = 𝑐1 + (𝑐2 + 𝑐3)
(𝑐1 × 𝑐2) × 𝑐3 = 𝑐1 × (𝑐2 × 𝑐3)

(1.15)

• Multiplication distributes with respect to addition:

𝑐1 × (𝑐2 + 𝑐3) = 𝑐1 × 𝑐2 + 𝑐1 × 𝑐3 (1.16)

• Subtraction is defined everywhere.

• Division is defined everywhere except when the divisor is zero.

Definition 1.4 (Conjugation). Ordered pair representation defines a complex number as an
ordered pair of reals:

𝑐 = 𝑎 + 𝑏𝑖9 ↦→ (𝑎, 𝑏) (1.17)

Besides basic arithmetic operations andmodulus operation, complex numbers have a unique
operation called conjugation. If 𝑐 = 𝑎 +𝑏𝑖 is an arbitrary complex number, then the conjugate
of 𝑐 is 𝑐 = 𝑎 − 𝑏𝑖 . Two numbers related by conjugation are said to be complex conjugates of
each other. The conjugation operation has several basic properties:

• Property 1: Conjugate respects addition 𝑐1 + 𝑐2 = 𝑐1 + 𝑐2.

• Property 2: Conjugate respects multiplication 𝑐1 × 𝑐2 = 𝑐1 × 𝑐2.

• Property 3: Conjugate 𝑐 ↦→ 𝑐 is bijective.

• Property 4: The modulus squared of a complex number is obtained by multiplying the
number with its conjugate 𝑐 × 𝑐 = |𝑐 |2.

9Thanks for Xin Shu’s correction of 𝑎 + 𝑏 → 𝑎 + 𝑏𝑖 .
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(c) Subtraction

Figure 1.5: The complex plane (a) and parallelogram rule for (b) addition and (c) subtraction.

1.2.3 The Geometry of Complex Numbers

Definition 1.5 (Complex Plane orArgand Plane). The complex plane is the plane formed by
the complex numbers, with a Cartesian coordinate system such that the horizontal x-axis, called
the real axis, is formed by the real numbers, and the vertical y-axis, called the imaginary axis, is
formed by the imaginary numbers.

In the complex plane (Figure 1.5a), we can easily find that the modulus is nothing more
than the length of the vector. Indeed, the length of a vector, via Pythagoras theorem, is the
square root of the sum of the squares of its edges, which is precisely the modulus, as defined
in the previous section.

Next comes addition: vectors can be added using the so-called parallelogram rule il-
lustrated by Figure 1.5b. In words, draw the parallelogram whose parallel edges are the two
vectors to be added; their sum is the diagonal.

Subtraction too has a clear geometric meaning: subtracting 𝑐2 from 𝑐1 is the same as adding
the negation of 𝑐2, i.e., −𝑐2, to 𝑐1 (Figure 1.5c).

To give a simple geometrical meaning to multiplication, we need to develop yet another
characterization of complex numbers.

Definition 1.6 (Polar Coordinate System). The polar coordinate system is a two-dimensional
coordinate system in which each point on a plane is determined by a distance 𝜌 from a reference
point and an angle 𝜃 from a reference direction.

Similar to the previous Cartesian representation (𝑎,𝑏), the polar representation (𝜌, 𝜃 )
is capable to uniquely determine a complex number because these two representations can be
mutually converted:

10
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(𝑎,𝑏) ↦→ (𝜌, 𝜃 ) (1.18)

where 𝜌 is the modulus

𝜌 =
√
𝑎2 + 𝑏2 (1.19)

and 𝜃 is also easy, via trigonometry10

𝜃 = atan2(𝑏, 𝑎) ∈ (−𝜋, 𝜋] (1.21)

(𝜌, 𝜃 ) ↦→ (𝑎,𝑏) (1.22)

where 𝑎 is the real part

𝑎 = 𝜌 cos(𝜃 ) (1.23)

and 𝑏 is the imaginary part

𝑏 = 𝜌 sin(𝜃 ) (1.24)

In physics and engineering, angle 𝜃 is also known as phase and distance 𝜌 is also known
as magnitude. Hence, we have another definition of a complex number

Definition 1.7 (Complex Number). A complex number is a magnitude and a phase.

We are now ready for multiplication: given two complex numbers in polar coordinates,
𝑐1 = (𝜌1, 𝜃1) and 𝑐2 = (𝜌2, 𝜃2), their product can be obtained by simply multiplying their
magnitude and adding their phase:

𝑐1 × 𝑐2 = (𝜌1, 𝜃1) × (𝜌2, 𝜃2) = (𝜌1𝜌2, 𝜃1 + 𝜃2) (1.25)

Now that we are armed with a geometric way of looking at multiplication, we can tackle
division as well. After all, division is nothingmore than the inverse operation of multiplication:

𝑐1
𝑐2

=

(
𝜌1
𝜌2
, 𝜃1 − 𝜃2

)
(1.26)

On this basis, we can further derive fast 𝑛-order power (Figure 1.6a) and root (Figure 1.6b)
calculations about a complex number 𝑐 = (𝜌, 𝜃 )

𝑐𝑛 = (𝜌𝑛, 𝑛𝜃 ) (1.27)

and11

𝑐
1
𝑛 =

(
𝜌

1
𝑛 ,

1
𝑛
(𝜃 + 𝑘2𝜋)

)
, where 𝑘 = 0, 1, · · · , 𝑛 − 1 (1.28)

Instructor: Chao Liang
10The function atan2 computes the principal value of the argument function applied to the complex number 𝑎 +𝑏𝑖 .

𝑎 + 𝑏 (1.20)

For more information please refer to https://en.wikipedia.org/wiki/Atan2.
11Thanks for Ziyi Ding’s correction of 𝑛 → 𝜃 in Eq.(1.28).
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(a) The 𝑛-order Powers (b) The 𝑛-order roots

Figure 1.6: The 𝑛-order powers (a) and roots (b) of a complex number.
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2 Complex Vector Space

2.1 Complex Vector Space

Definition 2.1 (Complex Vector Space). A complex vector space is a nonempty set V, whose
elements we shall call vectors, with three operations

• Addition: +: V × V→ V

• Negation: −: V→ V

• Scalar multiplication: ·: C × V→ V

and a distinguished element called the zero vector 0 ∈ V in the set. These operations and zero
must satisfy the following properties: ∀v,w,x ∈ V and for all 𝑐, 𝑐1, 𝑐2 ∈ C,

i. Commutativity of addition: v +w = w + v,

ii. Associativity of addition: (v +w) + x = v + (w + x),

iii. Additive identity: v + 0 = v = 0 + v,

iv. Additive inverse: v + (−v) = 0 = (−v) + v,

v. Multiplication identity: 1 · v = v,

vi. Scalar multiplication distributes over addition: 𝑐 · (v +w) = 𝑐 · v + 𝑐 ·w,

vii. Scalar multiplication distributes over complex addition: (𝑐1 + 𝑐2) · v = 𝑐1 · v + 𝑐2 · v,

Example 2.1: C𝑛

C𝑛 , the set of vectors of length 𝑛 with complex entries, is a complex vector space.

Example 2.2: C𝑚×𝑛

C𝑚×𝑛 , the set of all𝑚-by-𝑛 matrices (two-dimensional arrays) with complex entries, is a
complex vector space.

13
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2 Complex Vector Space

2.1.1 Unary Operations

Three unary operations for ∀A ∈ C𝑚×𝑛

• Transpose:
A⊤ ∈ C𝑛×𝑚 such that A⊤( 𝑗, 𝑘) = A(𝑘, 𝑗)1 (2.1)

• Conjugate:
A ∈ C𝑚×𝑛 such that A( 𝑗, 𝑘) = A( 𝑗, 𝑘) (2.2)

• Ajoint:
A† ∈ C𝑛×𝑚 such that A†( 𝑗, 𝑘) = A(𝑘, 𝑗) (2.3)

Property 1 (Properties of Transpose). ∀𝑐 ∈ C and A,B ∈ C𝑚×𝑛

• Transpose is idempotent:
(A⊤)⊤ = A (2.4)

• Transpose respects addition:
(A + B)⊤ = A⊤ + B⊤ (2.5)

• Transpose respects scalar multiplication:

(𝑐 · A)⊤ = 𝑐 · A⊤ (2.6)

Property 2 (Properties of Conjugate). ∀𝑐 ∈ C and A,B ∈ C𝑚×𝑛

• Conjugate is idempotent:

A = A (2.7)

• Conjugate respects addition:
A + B = A + B (2.8)

• Conjugate respects scalar multiplication:

𝑐 · A = 𝑐 · A (2.9)

Property 3 (Properties of Adjoint). ∀𝑐 ∈ C and A,B ∈ C𝑚×𝑛

• Adjoint is idempotent:
(A†)† = A (2.10)

• Adjoint respects addition:
(A + B)† = A† + B† (2.11)

• Conjugate respects scalar multiplication:

(𝑐 · A)† = 𝑐 · A† (2.12)
1Thanks for Ziyi Ding’s correction of removing the redundant transpose mark.
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2.1.2 Matrix Multiplication

Property 4 (Properties of Matrix Multiplication). ∀A ∈ C𝑚×𝑛,B ∈ C𝑛×𝑝 ,C ∈ C𝑛×𝑝 , and D ∈
C𝑝×𝑞,

• Matrix multiplication distributes over addition:

A × (B + C) = (A × B) + (A × C) (2.13)
(B + C) × D = (B × D) + (C × D) (2.14)

• Matrix multiplication respect scalar multiplication:

𝑐 · (A × B) = (𝑐 · A) × B = A × (𝑐 · B) (2.15)

• Matrix multiplication relates to the transpose:

(A × B)⊤ = B⊤ × A⊤ (2.16)

• Matrix multiplication respects to the conjugate:

A × B = A × B (2.17)

• Matrix multiplication relates to the adjoint:

(A × B)† = B† × A† (2.18)

The physical explanation. The elements of C𝑛 are the ways of describing the states of
a quantum system. Some suitable elements of C𝑛𝑛 will correspond to the changes that occur
to the states of a quantum system. Given a state x ∈ C𝑛 and a matrix A ∈ C𝑛×𝑛 , we shall
form another state of the system A × x which is an element of C𝑛 . Formally, × in this case is
a function × : C𝑛×𝑛 × C𝑛 → C𝑛 . We say that the algebra of matrices “acts” on the vectors to
yield new vectors.

2.1.3 Linear Map

Definition 2.2 (LinearMap). A linearmap fromV toV
′
is a function 𝑓 : V→ V′,∀v, v1, v2 ∈ V,

and 𝑐 ∈ C where

• 𝑓 respects the addition:
𝑓 (v1 + v2) = 𝑓 (v1) + 𝑓 (v2) (2.19)

• 𝑓 respects the scalar multiplication:

𝑓 (𝑐 · v) = 𝑐 · 𝑓 (v) (2.20)

The physical explanation. We shall call any linear map from a complex vector space to
itself an operator. If 𝐹 : C𝑛 → C𝑛 is an operator on C𝑛 and A is an 𝑛-by-𝑛 matrix such that for
all v we have 𝐹 (v) = A×v, then we say that 𝐹 is represented by A. Several different matrices
might represent the same operator.
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2.2 Basis and Dimension

2.2.1 Basis

Definition 2.3 (Linear Combination). Let V be a complex (real) vector space. v ∈ V is a linear
combination of the vectors v0, v1, · · · , v𝑛−1 in V if v can be written as

v = 𝑐0 · v0 + 𝑐1 · v1 + · · · + 𝑐𝑛−1 · v𝑛−1 (2.21)

for some 𝑐0, 𝑐1, · · · , 𝑐𝑛−1 in C(R).

Definition 2.4 (Linearly Independent). A set {v0, v1, · · · , v𝑛−1} of vectors inV is called linearly
independent if

0 = 𝑐0 · v0 + 𝑐1 · v1 + · · · + 𝑐𝑛−1 · v𝑛−1 (2.22)

implies that 𝑐0 = 𝑐1 = · · · = 𝑐𝑛−1 = 0. This means that the only way that a linear combination of
the vectors can be the zero vector is if all the 𝑐 𝑗 are zero.

Corollary 1. For any v𝑖 |𝑖=0,1,· · · ,𝑛−1, cannot be written as a combination of the others {v𝑗 }𝑛−1𝑗=0, 𝑗≠𝑖

Corollary 2. For any 0 ≠ v ∈ V, unique coefficients {𝑐𝑖}𝑛−1𝑖=0

Definition 2.5 (Basis). A set B = {v0, v1, · · · , v𝑛−1} ⊆ V of vectors is called a basis of a (com-
plex) vector space V if both

• ∀v ∈ V, v = 𝑐0 · v0 + 𝑐1 · v1 + · · · + 𝑐𝑛−1 · v𝑛−1
• {v𝑖 |v0 ∈ V}𝑛−1𝑖=0 is linearly independent

2.2.2 Dimension

Definition 2.6 (Dimension). The dimension of a (complex) vector space is the number of elements
in a basis of the vector space.

Definition 2.7 (Transition Matrix). A change of basis matrix or a transition matrix from basis
B to basis D is a matrix MD←B such that their coefficients satisfy

vD = MD←B × vB (2.23)

In other words, MD←B is a way of getting the coefficients with respect to one basis from
the coefficients with respect to another basis.

Remark. Utilities of Transition Matrix

• Operator re-representation in a new basis

AD = M−1D←B × AB ×MD←B (2.24)

• State re-representation in a new basis

vD = MD←B × vB (2.25)
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Hadamard

Figure 2.1: The Hardamard matrix for basis transition

Example 2.3: Hadamard Matrix

In R2, the transition matrix from the canonical basis{[
1
0

]
,

[
0
1

]}
a (2.26)

to this other basis {[ 1√
2
1√
2

]
,

[ 1√
2
− 1√

2

]}
(2.27)

is the Hadamard matrix:

H =
1
√
2

[
1 1
1 −1

]
=

[ 1√
2

1√
2

1√
2
− 1√

2

]
(2.28)

as shown in Figure 2.1.
aThanks for Xin Shu’s correction of pointing out redundant basis vector.

The motivation to change basis. In physics, we are often faced with a problem in which
it is easier to calculate something in a noncanonical basis. For example, consider a ball rolling
down a ramp as depicted in Figure 2.2a.

The ball will not be moving in the direction of the canonical basis. Rather it will be rolling
downward in the direction of +45, 45 basis. Suppose we wish to calculate when this ball will
reach the bottom of the ramp or what is the speed of the ball. To do this, we change the problem
from one in the canonical basis to one in the other basis. In this other basis, the motion is easier
to deal with. Once we have completed the calculations, we change our results into the more
understandable canonical basis and produce the desired answer. We might envision this as the
flowchart shown in Figure 2.2b.

Throughout this course, we shall go from one basis to another basis, perform some calcu-
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Transition Calculations Reverse 
Transition

(a) A ball rolling down a ramp

Transition Calculations Reverse 
Transition

(b) Problem-solving flowchart

Figure 2.2: Basis transition example (a) and flowchart (b).

lations, and finally revert to the original basis. The Hadamard matrix will frequently be the
means by which we change the basis.

2.3 Inner Product and Hilbert Space

2.3.1 Inner Product

Definition 2.8 (Inner Product). An inner product (also called a dot product or scalar product) on
a complex vector space V is a function

⟨·, ·⟩ : V × V→ C (2.29)

that satisfies the following conditions for all v, v1, v2, and v3 in V and for 𝑎, 𝑐 ∈ C:

i. Nondegenerate:
⟨v, v⟩ ≥ 0 and ⟨v, v⟩ = 02 ⇔ v = 0 (2.30)

ii. Respects addition:

⟨v1 + v2, v3⟩ = ⟨v1, v3⟩ + ⟨v2, v3⟩ (2.31)
⟨v1, v2 + v3⟩ = ⟨v1, v2⟩ + ⟨v1, v3⟩ (2.32)

iii. Respects scalar multiplication:

⟨𝑐 · v1, v2⟩ = 𝑐 × ⟨v1, v2⟩ (2.33)
⟨v1, 𝑐 · v2⟩ = 𝑐 × ⟨v1, v2⟩ (2.34)

iv. Skew symmetric:
⟨v1, v2⟩ = ⟨v2, v1⟩ (2.35)

Definition 2.9 (Inner Product Space). A vector space with an inner space.

2Thanks for Xin Shu’s correction of pointing out the missing 0.
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Example 2.4: Inner Product in R𝑛

R𝑛 : The inner product is given as

⟨v1, v2⟩ = v⊤1 × v2 (2.36)

Example 2.5: Inner Product in C𝑛

C𝑛 : The inner product is given as

⟨v1, v2⟩ = v†1 × v2 (2.37)

Example 2.6: Inner Product in R𝑛×𝑛

R𝑛×𝑛 has an inner product given for matrices A,B ∈ R𝑛×𝑛 as

⟨A,B⟩ = Tr(A⊤ × B) (2.38)

where the trace of a square matrix C is given as the sum of the diagonal elements. That
is,

Tr(𝐶) =
𝑛−1∑
𝑖=0

𝐶 [𝑖, 𝑖] (2.39)

Example 2.7: Inner Product in C𝑛×𝑛

C𝑛×𝑛 has an inner product given for matrices A,B ∈ C𝑛×𝑛 as

⟨A,B⟩ = Tr(A† × B) (2.40)

Definition 2.10 (Norm). Norm is a unary function derived from inner product

| · | : V→ R (2.41)

defined as |v | =
√
⟨v, v⟩, which has the following properties

• Norm is nondegenerate:
|v | > 0 if v ≠ 0 and |0| = 0 (2.42)

• Norm satisfies the triangular inequality:

|v +w | ≤ |v | + |w | (2.43)
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• Norm respects scalar multiplication:

|𝑐 · v | = |𝑐 | · |v | (2.44)

Definition 2.11 (Distance). Distance is a binary function defined based on norm

𝑑 (·, ·) : V × V→ R (2.45)

defined as 𝑑 (v1, v2) = |v1 − v2 | =
√
⟨v1 − v2, v1 − v2⟩, which has the following properties

• Distance is nondegenerate:

𝑑 (v,w) > 0 if v ≠ w and 𝑑 (v,w) = 0 ⇔ v = w (2.46)

• Distance satisfies the triangular inequality:

𝑑 (u, v) ≤ 𝑑 (u,w) + 𝑑 (w, v) (2.47)

• Distance is symmetric:
𝑑 (u, v) = 𝑑 (v,u) (2.48)

Definition 2.12 (Orthonormal Basis). A basis B = {v0, v1, · · · , v𝑛−1} for an inner space

⟨v𝑖 , v𝑗 ⟩ =
{
1, if 𝑖 = 𝑗

0, if 𝑖 ≠ 𝑗
(2.49)

with the following property

• For ∀v ∈ V and any orthonormal basis {e𝑖}𝑛−1𝑖=0 we have

v =
𝑛−1∑
𝑖=0
⟨e𝑖 , v⟩e𝑖 (2.50)

Note: inner product defines geometry in the vector space (Figure 2.3).

2.3.2 Hilbert Space

Definition 2.13 (Cauchy Sequence). Within an inner product space V, ⟨·, ·⟩ (with the derived
norm and a distance function), a sequence of vectors v0, v1, · · · is called a Cauchy sequence if
∀𝜖 > 0, there exists an 𝑁0 ∈ N such that for all𝑚,𝑛 ≥ 𝑁0, 𝑑 (v𝑚, v𝑛) ≤ 𝜖 .

Definition 2.14 (Complete). For any Cauchy sequence v0, v1, · · · , it is complete if there exist a
v ∈ V, such that lim

𝑛→∞
𝑑 (v𝑛 − v) = 0.

Definition 2.15 (Hilbert Space). A Hilbert space is a complex inner space that is complete.
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Norm （Length）

Inner product

Cos θ（Angle）

Orthogonal 

Geometry

Length/Norm
Distance
Angle/Cos θ
Orthogonal

…

Distance 

Figure 2.3: Inner product lays the geometric foundation in the vector space.

2.4 Eigenvalue and Eigenvector

Definition 2.16 (Eigenvalue and Eigenvector). For a matrix A ∈ C𝑛×𝑛 , if there is a number
𝑐 ∈ C and a vector 0 ≠ v ∈ C𝑛 such that

Av = 𝑐 · v (2.51)

then 𝑐 is called an eigenvalue of A and v is called an eigenvector of A associate with 𝑐 .

2.5 Hermitian and Unitary Matrices

2.5.1 Hermitian Matrix

Definition 2.17 (Hermitian Matrix). An 𝑛-by-𝑛 matrix A is called hermitian if A† = A. In other
words, 𝐴[ 𝑗, 𝑘] = 𝐴[𝑘, 𝑗].

Definition 2.18 (Self-Adjoint). If A is a hermitian matrix then the operator that it represents is
called self-adjoint.

Proposition 2. if A ∈ C𝑛×𝑛 is Hermitian, ∀v,w ∈ C𝑛 we have

⟨Av,w⟩ = ⟨v,Aw⟩ (2.52)
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Proof.

⟨Av,w⟩ = (Av)† ×w % definition of inner product (2.53)

= v† × A† ×w % multiplication relates to the adjoint (2.54)

= v† × A ×w % definition of Hermitian matrices (2.55)

= v† × (Aw) % multiplication is associative (2.56)
= ⟨v,Aw⟩ % definition of inner product (2.57)

□

Proposition 3. For a Hermitian matrix, its all eigenvalues are real.

Proof. Let A ∈ C𝑛×𝑛 be a Hermitian matrix with an eigenvalue 𝑐 ∈ C and an eigenvector
v ∈ C𝑛

𝑐 ⟨v, v⟩ = ⟨v, 𝑐v⟩ % inner product respects scalar multiplication (2.58)
= ⟨v,Av⟩ % definition of eigenvalue and eigenvector (2.59)
= ⟨Av, v⟩ % see Proposition 2 (2.60)
= ⟨𝑐v, v⟩ % definition of eigenvalue and eigenvector (2.61)
= 𝑐 ⟨v, v⟩ % inner product respects scalar multiplication (2.62)

(2.63)

□

Proposition 4. For a Hermitian matrix, distinct eigenvectors that have distinct eigenvalues are
orthogonal

Proof. Let A ∈ C𝑛×𝑛 be a Hermitian matrix with two distinct eigenvectors v1 ≠ v2 ∈ C𝑛 and
their related eigenvalues 𝑐1, 𝑐2 ∈ C

𝑐2⟨v1, v2⟩ = ⟨v1, 𝑐2v2⟩ % inner product respects scalar multiplication (2.64)
= ⟨v1,Av2⟩ % definition of eigenvalue and eigenvector (2.65)
= ⟨Av1, v2⟩ % see Proposition 2 (2.66)
= ⟨𝑐1v1, v2⟩ % definition of eigenvalue and eigenvector (2.67)
= 𝑐1⟨v1, v2⟩ % inner product respects scalar multiplication (2.68)
= 𝑐1⟨v1, v2⟩ % see proposition 3 (2.69)

□

Proposition 5 (The Spectral Theorem for Finite-Dimensional Self-Adjoint Operators.). Every
self-adjoint operator A on a finite-dimensional complex vector space V can be represented by a
diagonal matrix whose diagonal entries are the eigenvalues of A, and whose eigenvectors form an
orthonormal basis for V (we shall call this basis an eigenbasis).
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Physical Meaning of Hermitian Matrix. Hermitian matrices and their eigenbases will
play a major role in our story. We shall see in the following lectures that associated with every
physical observable of a quantum system there is a corresponding Hermitian matrix. Measure-
ments of that observable always lead to a state that is represented by one of the eigenvectors
of the associated Hermitian matrix.

2.5.2 Unitary Matrix

Definition 2.19 (Unitary Matrix). Given a reversible matrix U ∈ C𝑛×𝑛 such that

U × U† = U† × U = I𝑛 (2.70)

then U is a unitary matrix.

Example 2.8: Unitary Matrices

U1 =


cos𝜃 − sin𝜃 0

sin𝜃 cos𝜃 0

0 0 1

 for any 𝜃 . U2 =


1+𝑖
2

𝑖√
3

3+𝑖
2
√
15

−1
2

1√
3

4+3𝑖
2
√
15

1
2

−𝑖√
3

5𝑖
2
√
15


Proposition 6 (Unitary Matrices Preserve Inner Products). If U ∈ C𝑛×𝑛 is unitary, ∀v,w ∈ C𝑛
we have

⟨Uv,Uw⟩ = ⟨v,w⟩ (2.71)

Proof. Let A ∈ C𝑛×𝑛 be a Hermitian matrix with two distinct eigenvectors v1 ≠ v2 ∈ C𝑛 and
their related eigenvalues 𝑐1, 𝑐2 ∈ C

⟨Uv,Uw⟩ = (Uv)† × (Uw) % definition for inner product (2.72)

= v†U† × Uw % multiplication relates to adjoint (2.73)

= v† × I ×w % definition for unitary matrices (2.74)
= ⟨v,w⟩ % definition for inner product (2.75)

□

Proposition 7 (Unitary Matrices Preserve Norm). If U ∈ C𝑛×𝑛 is unitary, ∀v, ∈ C𝑛 we have

|Uv | = |v | (2.76)
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Proof. Let A ∈ C𝑛×𝑛 be a Hermitian matrix with two distinct eigenvectors v1 ≠ v2 ∈ C𝑛 and
their related eigenvalues 𝑐1, 𝑐2 ∈ C, we have3:

|Uv | =
√
⟨Uv,Uv⟩ % definition for norm (2.77)

=
√
⟨v, v⟩ % unitary matrices preserve inner product (2.78)

= |v | % definition for norm (2.79)
(2.80)

□

Proposition 8 (Unitary Matrices Preserve Distance). If U ∈ C𝑛×𝑛 is unitary, ∀v,w ∈ C𝑛 we
have

𝑑 (Uv,Uw) = 𝑑 (v,w) (2.81)

Proof.

𝑑 (Uv,Uw) = |Uv − Uw | % definition for distance (2.82)
= |U(v −w) | % multiplication distributes over addition (2.83)
= |v −w | % unitary matrices preserve norm (2.84)
= 𝑑 (v,w) % definition of distance (2.85)

□

Proposition 9. The modulus of eigenvalues of unitary matrix is 1.

Proposition 10. Unitary matrix is the transition matrix from an orthonormal basis to another
orthonormal basis.

Physical meaning of unitary Matrix. What does unitary really mean? As we saw, it
means that it preserves the geometry. But it also means something else: If U is unitary and
UV = V

′ , then we can easily form U† and multiply both sides of the equation by U† to get
U†UV = U†V

′ or V = U†V
′ . In other words, because U is unitary, there is a related matrix

that can undo the action that U performs. U† takes the result of U’s action and gets back the
original vector. In the quantum world, all actions (that are not measurements) are undoable or
reversible in such a manner.

The roles of Hermitian and unitary matrices in quantum computing. As shown in
Figure 2.4, the Hermitian matrix plays an important role in the quantum measurement phrase,
which decides the concrete basis to observe the final computational result |𝜓 ∗⟩. Once the basis
(H1 or H2) is decided, the observation result must be probabilistically collapsed into one of the
eigenvectors of the corresponding basis. The unitary matrix plays a role of action to change
the state of the quantum computer. Considering its reversible property, all actions performed
in quantum computing can be undone by performing an action described by U†.

The relations of identity, Hermitian, unitary, and square matrices are shown in Figure 2.5.
3Thanks for Yurui Wu’s correction of removing the redundant left bracket in the following proof process.
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Quantum
Device

q-bits

Get output

measure

Figure 2.4: The role of Hermitian and unitary matrices.

Hermitian Invertible

UnitaryI
-I

Square matrices

Figure 2.5: Types of matrices.

Instructor: Chao Liang
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3 The Leap from Classic toQuantum

3.1 Classic Deterministic Systems

Definition 3.1 (Discrete Dynamic System, Dynamics and States). If 𝑓 : R𝑛 → R𝑛 is a
transformation and · · · ,x𝑡 ,x𝑡+1,x𝑡+2, · · · is a sequence of vectors in R𝑛 such that x𝑡+1 = 𝑓 (x𝑡 ),
then we say that 𝑓 and sequence · · · ,x𝑡 ,x𝑡+1,x𝑡+2, · · · make up a discrete dynamical system,
where function 𝑓 is called dynamics and vectors {x𝑡 } are called states.

60 21 12

53 34 105

Figure 3.1: Classic billiards.

Example 3.1: Classic Billiards

Let’s consider a simple system described by a simple (unweighted) directed graph
together with some toy marbles. There be 6 vertices in a graph and a total of 27 marbles.
We might place 6marbles on vertex 0, 2marbles on vertex 1, and the rest as described by
Figure 3.1.

We shall denote its deterministic state as x = [6, 2, 1, 5, 3, 10]⊤, and its dynamics

as a Boolean adjacency matrixM =



0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 1 0


whereM(𝑖, 𝑗) = 1 if and only

if there is an arrow from vertex 𝑗 to vertex 𝑖 .
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The state evolvement can be represented as matrix multiplication:

x𝑡+1 = 𝑓 (x𝑖) = Mx𝑡 (3.1)

The multiple step dynamics can be written as Boolean matrix multiplication:

M2(𝑖, 𝑗) =
𝑛−1∨
𝑘=0

M(𝑖, 𝑘) ∧M(𝑘, 𝑗) (3.2)

where ∨ and ∧ represent Boolean “OR” and “AND” operators, and M2(𝑖, 𝑗) = 1 if and only if
there is a path of length 2 from vertex 𝑗 to vertex 𝑖 as shown in Figure 3.2.

…

0

1

n -1

j i

Figure 3.2: The 2-step state transition

3.2 Probabilistic Systems

The state of a probabilistic system is composed of probabilistic entries, and the sum of all
entries is 1.

Example 3.2: A Three-Vertex Graph

x =

[
1
5
,
3
10
,
1
2

]⊤
• one-fifth chance that the marble is on vertex 0;

• three-tenths chance that the marble is on vertex 1;

• half chance that the marble is on vertex 2.
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0 1

2

The dynamics matrix for this graph is

M =


0 1

6
5
6

1
3

1
2

1
6

2
3

1
3 0


Figure 3.3: Probabilistic system.

The dynamics of a probabilistic system is described by a directed (probabilistic) weighted
graph, where several arrows shooting out of each vertex with real numbers between 0 and
1 as weights as shown in Figure 3.3. The corresponding matrix is called doubly stochastic
matrix, which has the following two properties:

• The column sum, i.e., the sum of all weights leaving a vertex, is 1;

• The row sum, i.e., the sum of all weights entering a vertex, is 1.

The state evolvement. If we have x𝑡 expressing the probability of the position of the
marble at time 𝑡 and M expressing the probability of the way the marble moves around, then
x𝑡+1 = Mx𝑡 is expressing the probability of the marbles location at time 𝑡 + 1.

Themultiple step dynamics of probabilistic system is formulated with matrix multiplica-
tionwith probability entries (a.k.a., normalmatrixmultiplication). Figure 3.4 shows an example
of the 2-step dynamics.

M2(𝑖, 𝑗) = ∑𝑛−1
𝑘=0 M(𝑖, 𝑘)M(𝑘, 𝑗)

whereM2(𝑖, 𝑗) = the probability of
going from vertex 𝑗 to vertex 𝑖 in 2
time clicks.

…

0

1

n -1

j i

M[0, j]

M[1, j]

M[n-1, j] M[i, n-1]

M[i, 1]

M[i, 0]

Figure 3.4: The 2-step dynamics in the probabilistic system.
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0

v
b

v
b

1

2

3

The dynamics matrix for this graph is

M =


0 1

2
1
2 0

1
2 0 0 1

2
1
2 0 0 1

2

0 1
2

1
2 0


Figure 3.5: Stochastic billiard.

Example 3.3: Stochastic Billiard

Consider a stochastic billiard with dynamics shown in Figure 3.5 and initial state x0, its
state evolvement procedure exhibits periodic cycles as follows:

x0 =
[
1 0 0 0

]⊤ M↦−→ x1 =
[
0 1

2
1
2 0

]⊤ M↦−→ x2 =
[ 1
2 0 0 1

2
]⊤

M↦−→ x3 = x1
M↦−→ x4 = x2

M↦−→ · · ·
(3.3)

0

1

2

3

4

5

6

7

1

1

1

1

1

Figure 3.6: probabilistic double silt experiment
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Example 3.4: Probabilistic Double Silt Experiment

Assume a virtual double silt experiment as shown in Figure 3.6. The bullets are fired from
the machine-gun, pass through two narrow slits in the wall, and eventually land on the
targets behind the wall. Its dynamics matrix can be formulated as

M =



0 0 0 0 0 0 0 0
1
2 0 0 0 0 0 0 0
1
2 0 0 0 0 0 0 0
0 1

3 0 0 0 0 0 0
0 1

3 0 0 0 0 0 0
0 1

3
1
3 0 0 0 0 0

0 0 1
3 0 0 0 0 0

0 0 1
3 0 0 0 0 0


and accordingly, its 2-step dynamics can be computed by matrix multiplication:

M2 = M ×M =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1
6

1
3 0 1 0 0 0 0

1
6

1
3 0 0 1 0 0 0

1
3

1
3 0 0 1 0 0

1
6 0 1

3 0 0 0 1 0
1
6 0 1

3 0 0 0 0 1


Hence, given an initial state x0 =

[
1 0 0 0 0 0 0 0

]⊤, its 2-step transition state
x2 = M2x0 =

[
0 0 0 1

6
1
6

1
3

1
6

1
6
]⊤.

Note that the probability of the bullets landing on the middle target is the largest,
i.e., 1

3 . This is consistent with our knowledge because both routes can reach this target,
meaning a summation of probabilities.

3.3 Quantum Systems

The state of a quantum system is composed of quantum entries (complex values), whose
modulus square represents the probability, and the sum of modulus squared of all entries is 1.
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Example 3.5: The state of a quantum system

Consider a complex vector x =

[
1√
3
, 2𝑖√

15
,
√

2
5

]⊤
, since x†x = 1

3 +
4
15 +

2
5 = 1, it is a qualified

state vector of a quantum system.

The dynamics of a quantum system also has two representations. One is the graph form,
which can be described by a directed (complex) weighted graph. The other is the matrix form,
which corresponds to a special unitary matrix whose modulus square is a doubly stochastic
matrix as exemplified in Figure 3.7.

0 1

2

0 1

2

The dynamics matrix for this graph is

M =


1√
2

1√
2

0
−𝑖√
2

𝑖√
2

0
0 0 𝑖

 ↦→ |M[𝑖, 𝑗] |
2 =


1
2

1
2 0

1
2

1
2 0

0 0 1


Figure 3.7: Quantum system.

Table 3.1 gives a detailed comparison of three systems in terms their states and dynamics.
In particular, the dynamics is represented in two different forms, which are graph (Gra.) and
matrix (Mat.), respectively.

Table 3.1: Comparison of three systems.

Classic Deterministic
System Probabilistic System Quantum System

State
x = [𝑥1, 𝑥2, 𝑥3]⊤

𝑥𝑖 ∈ N
x = [𝑝1, 𝑝2, 𝑝3]⊤

𝑥𝑖 ∈ [0, 1],
∑

𝑖 𝑝𝑖 = 1
x = [𝑐1, 𝑐2, 𝑐3]⊤
𝑐𝑖 ∈ C,

∑
𝑖 |𝑐𝑖 |2 = 1

D
yn

am
ic
s

G
ra
. Directed unweighted

graph
Directed (probabilistic)

weighted graph
Directed (complex)
weighted graph

M
at
. Boolean adjacency

matrix
Doubly stochastic

matrix

Unitary matrix whose
modulus squares is a

doubly stochastic matrix

The state evolvement is formulated as matrix multiplication x𝑡+1 = Mx𝑡 .

The forward dynamics and backward dynamics can be represented as a matrix M and
its adjointM† as shown in Table 3.2. This means that if you perform some operation x ↦→ Mx
and then undo the operationM†Mx = Ix = x, you will find yourself (with probability 1) in the
same state with which you began.
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Table 3.2: Comparison of forward and backward dynamics.

Dynamics graph Dynamics matrix

Forward
dynamics

0 1

2

0 1

2

M =


1√
2

1√
2

0
−𝑖√
2

𝑖√
2

0

0 0 𝑖



Backward
dynamics

0 1

2

0 1

2

M =


1√
2

𝑖√
2

0
1√
2

−𝑖√
2

0

0 0 −𝑖



0

v
b

v
b

1

2

3

The dynamics matrix for this graph is

M =


0 1√

2
1√
2

0
1√
2

0 0 − 1√
2

1√
2

0 0 1√
2

0 − 1√
2

1√
2

0


Figure 3.8: Quantum billiard.

Example 3.6: Quantum Billiard

Consider a quantum billiard with dynamics shown in Figure 3.8 and initial state x0, its
state evolvement procedure exhibits periodic cycles as follows:

x0 =
[
1 0 0 0

]⊤ M↦−→ x1 =
[
0 1√

2
1√
2

0
]⊤

M↦−→ x2 = x0
M↦−→ x3 = x1

M↦−→ · · ·
(3.4)
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0

1

2

3

4

5

6

7

1

1

1

1

1

Figure 3.9: Double silt experiment

Example 3.7: Double Silt Experiment

Given a double silt experiment as shown in Figure 3.9. The photons are ejected from the
flashlight, pass through two narrow slits in the wall, and eventually land on the screens
behind the wall. Its 1-step and 2-step dynamics matrices are respectively

M =



0 0 0 0 0 0 0 0
1√
2

0 0 0 0 0 0 0
1√
2

0 0 0 0 0 0 0

0 −1+𝑖√
6

0 1 0 0 0 0

0 −1−𝑖√
6

0 0 1 0 0 0

0 1−𝑖√
6

−1+𝑖√
6

0 0 1 0 0

0 0 −1−𝑖√
6

0 0 0 1 0

0 0 1−𝑖√
6

0 0 0 0 1



↦→ M2 =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
−1+𝑖√
12

−1+𝑖√
6

0 1 0 0 0 0
−1−𝑖√
12

−1−𝑖√
6

0 0 1 0 0 0

0 1−𝑖√
6

−1+𝑖√
6

0 0 1 0 0
−1−𝑖√
12

0 −1−𝑖√
6

0 0 0 1 0
−1+𝑖√
12

0 1−𝑖√
6

0 0 0 0 1


Note thatM(5, 0) = 1√

2
( 1−𝑖√

6
) + 1√

2
( −1+𝑖√

6
) = 1−𝑖√

12
+ −1+𝑖√

12
= 0√

12
= 0, which is called interfer-

ence phenomenon.

Superposition. Let the state of the system be given by x = [𝑐0, 𝑐1, · · · , 𝑐𝑛1]⊤ ∈ C𝑛 . It is
incorrect to say that the probability of the photons being in position 𝑘 is |𝑐𝑘 |2. Rather, to be in
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state x means that the particle is in some sense in all positions simultaneously. The photon
passes through the top slit and the bottom slit simultaneously, and when it exits both slits,
it can cancel itself out. A photon is not in a single position, rather it is in many positions, a
superposition.

Measurement and collapse. The reason we see particles in one particular position is
because we have performed a measurement. When we measure something at the quantum
level, the quantum object that we have measured is no longer in a superposition of states,
rather it collapses to a single classical state. So we have to redefine what the state of a quantum
system is: a system is in state x means that after measuring it, it will be found in position 𝑖
with probability |𝑐𝑖 |2.

Power of quantum computing. It is exactly this superposition of states that is the real
power behind quantum computing. Classical computers are in one state at every moment.
Imagine putting a computer in many different classical states simultaneously and then pro-
cessing with all the states at once. This is the ultimate in parallel processing!

Instructor: Chao Liang
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4 Quantum Mechanics

Double-silt experiment [play the animation video1 shown in Figure 4.1]: the double-slit
interference experiment can be done with a single photon. Moreover, if we place a measure-
ment device behind the double silts, the interference phenomenon will disappear (it seems the
photon knows it is being watched). How is one to understand this phenomenon?

Figure 4.1: Double-silt experiment

Explanations: two important concepts can be derived from the above experiment:

• Superposition. Let the state of the quantum system be given by𝑋 = [𝑐0, 𝑐1, · · · , 𝑐𝑛−1]⊤ ∈
C𝑛 . It is incorrect to say that the probability of the photons being in position 𝑘 is ∥𝑐𝑘 ∥2.
Rather, to be in state 𝑋 means that the particle is in some sense in all positions simulta-
neously. To explain the above double-silt experiment, the photon passes through the top
slit and the bottom slit simultaneously, and when it exists both slits, it can cancel itself
out. A photon is not in a single position, rather it is in many positions, a superposition.

• Measurement. Seeing things existing in many positions simultaneously is counter-
intuitive. Our daily-life experience tells us that things are in one position or (exclusive
or!) another. How can this be? The reason we see particles in one particular position
is because we have performed a measurement. When we measure something at the
quantum level, the quantum object that we havemeasured is no longer in a superposition
of states, rather it collapses to a single classical state. So we have to redefine what the
state of a quantum system is: a system is in state 𝑋 means that after measuring it, it will
be found in position 𝑘 with probability |𝑐𝑘 |2.

In the following discussion, superposition and measurement are two important and funda-
mental concepts rooted in quantum mechanics.

1 https://www.bilibili.com/video/BV1Yx41127fG/?spm_id_from=333.337.search-card.all.click
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4.1 Quantum States

4.1.1 Case 1: position on a line

Consider a subatomic particle on a line where it can only be detected at one of the equally
spaced points {𝑥0, 𝑥1, · · · , 𝑥𝑛−1} shown in Figure 4.2.

x0 x1 xi xn-1… …

Figure 4.2: Positions in a line

The particle being at the point 𝑥𝑘 is denoted as |𝑥𝑘⟩, using the Dirac ket notation |·⟩. To
each of these 𝑛 basic states, we shall associate a column vector:

|𝑥0⟩ ↦−→ [1, 0, · · · , 0]⊤

|𝑥1⟩ ↦−→ [0, 1, · · · , 0]⊤
...

|𝑥𝑛−1⟩ ↦−→ [0, 0, · · · , 1]⊤

(4.1)

The state of the particle |𝜓 ⟩ is a linear combination of |𝑥0⟩ , |𝑥1⟩ , · · · , |𝑥𝑛−1⟩, by suitable
complex weights, 𝑐0, 𝑐1, · · · , 𝑐𝑛−1 known as complex amplitudes,

|𝜓 ⟩ = 𝑐0 |𝑥0⟩ + 𝑐1 |𝑥1⟩ + · · · + 𝑐𝑛−1 |𝑥𝑛−1⟩ =
𝑛−1∑
𝑘=0

𝑐𝑘 |𝑥𝑘⟩ (4.2)

We say that the state |𝜓 ⟩ is a superposition of the basic states. |𝜓 ⟩ represents the particle as
being simultaneously in all {𝑥0, 𝑥1, · · · , 𝑥𝑛−1} locations, or a blending of all the |𝑥𝑘⟩.

Thus, every state of our system can be represented by an element of C𝑛 as:

|𝜓 ⟩ = [𝑐0, 𝑐1, · · · , 𝑐𝑛−1]⊤ (4.3)

The norm square of the complex number 𝑐𝑘 divided by the norm squared of |𝜓 ⟩, called proba-
bility amplitude 𝑐𝑘 , will tell us the probability that, after observing the particle, we will detect
it at the point 𝑥𝑘 :

𝑝 (𝑥𝑘 ) = |𝑐𝑘 |2 = (
|𝑐𝑘 |
| |𝜓 ⟩ | )

2 =
|𝑐𝑘 |2
| |𝜓 ⟩ |2 =

|𝑐𝑘 |2∑
𝑘 |𝑐𝑘 |2

(4.4)

Observe that 𝑝 (𝑥𝑘 ) is always a positive real number and 0 ≤ 𝑝 (𝑥𝑘 ) ≤ 1, as any genuine
probability should be.

When |𝜓 ⟩ is observed, we will find it in one of the basic states. We might write it as:

|𝜓 ⟩ |𝑥𝑘⟩ (4.5)

The probability of obtaining |𝑥𝑘⟩ after observing |𝜓 ⟩ is 𝑝 (𝑥𝑘 ) where 𝑘 ∈ {0, 1, · · · , 𝑛 − 1}.

Two typical operations of ket vectors in the Hilbert space:
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• addition:

|𝜓 ⟩ + |𝜓 ′⟩ = (𝑐0 + 𝑐′0) |𝑥0⟩ + (𝑐1 + 𝑐′1) |𝑥1⟩ + · · · + (𝑐𝑛−1 + 𝑐′𝑛−1) |𝑥𝑛−1⟩
= [𝑐0 + 𝑐′0, 𝑐1 + 𝑐′1, · · · , 𝑐𝑛−1 + 𝑐′𝑛−1]⊤

(4.6)

• scalar multiplication:

𝑐 |𝜓 ⟩ = 𝑐𝑐0 |𝑥0⟩ + 𝑐𝑐1 |𝑥1⟩ + · · · + 𝑐𝑐𝑛−1 |𝑥𝑛−1⟩ = [𝑐𝑐0, 𝑐𝑐1, · · · , 𝑐𝑐𝑛−1]⊤ (4.7)

It is worthy noting that a ket’s length does not matter as far as physics goes. In other
words, the ket 2 |𝜓 ⟩ describes the same physical system as |𝜓 ⟩.

4.1.2 Case 2: single-particle spin system

Stern-Gerlach experiment [play the animation video2 shown in Figure 4.3]: themagnetic
field splits the beam of electrons into two streams, found either at the top of the screen or at the
bottom, but none in between! Conclusion: when the spinning particle is measured in a given
direction, it can only be found in two states, i.e., it spins either clockwise or anticlockwise.

Figure 4.3: Stern-Gerlach experiment

Next, we put the two Stern-Gerlach apparatus (SGA) in different angles, and discuss the
observation results.

• Step 1: 0◦ SGA experiment. Figure 4.4 shows the particle’s spin direction and SGA’s
placement orientation before measurement (sub-figure A) and after measurement (sub-
figure B). Aftermeasurement, the particle is prepared in state 𝜎𝑧 = +1. If the particle state
is not perturbed, and the SGA’s placement orientation is kept the same, the following
measurements will always have the same results.

2 https://www.bilibili.com/video/BV1ta4y1a7fp?from=search&seid=2882474434643948118&spm_id_
from=333.337.0.0
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Figure 4.4: 0◦ Stern-Gerlach apparatus (SGA) experiment.

• Step 2: 180◦ SGA experiment. After preparing the spin by measuring it with SGA, we
turn the apparatus upside down and then measure 𝜎𝑧 again (Figure 4.5). What we find is
that if we originally prepared 𝜎𝑧 = +1, the upside down apparatus records 𝜎𝑧 = −1.

Figure 4.5: 180◦ Stern-Gerlach apparatus (SGA) experiment.

• Step 3: 90◦ SGA experiment. So far, there is still no difference between classical physics
and quantum physics. The difference only becomes apparent when we rotate the appa-
ratus through an arbitrary angle, say 𝜋/2 radians (90 degrees): (1) The apparatus begins
in the upright position (with the up-arrow along the z axis). A spin is prepared with
𝜎𝑧 = +1. (2) rotate the SGA so that the up-arrow points along the x axis (Figure 4.6).
(3) make a measurement of what is presumably the x component of the spin, 𝜎𝑥 . The
apparatus gives either 𝜎𝑥 = +1 or 𝜎𝑥 = 1, and the numbers of 𝜎𝑥 = +1 events and 𝜎𝑥 = 1
events are statistically equal. In other words, the average value of 𝜎𝑥 is zero.
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Figure 4.6: 90◦ Stern-Gerlach apparatus (SGA) experiment.

• Step 4: 𝜃◦ SGA experiment. Now lets do the whole thing over again, but instead of
rotating the SGA to lie on the x axis, rotate it to an arbitrary direction along the unit
vector �̂�. If �̂� lies at an angle 𝜃 with respect to �̂� (the prepared spin direction of the
particle shown in Figure 4.7), each time we do the experiment we get 𝜎 = +1 or 𝜎 = 1,
and the average value of the measurement 𝜎 is �̂� · �̂� = cos𝜃 .

Figure 4.7: 𝜃◦ Stern-Gerlach apparatus (SGA) experiment.

Let the probability of measuring 𝜎 is 𝑝 (𝜎), thus we have the following set of equations:{
𝑝 (𝜎 = +1) · (+1) + 𝑝 (𝜎 = −1) · (−1) = cos𝜃
𝑝 (𝜎 = +1) + 𝑝 (𝜎 = −1) = 1

(4.8)

From which we can calculate the measuring probabilities of 𝜎 = +1 and 𝜎 = −1.
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State representation. According to the previous Stern-Gerlach experiment, particle’s spin
state can be represented as the superposition of basic states in a specific direction.

• state along the z-axis can be represented, according to the previous 0◦ and 180◦ SGA
experiments, as

|𝜓 ⟩ = 𝛼𝑢 |𝑢⟩ + 𝛼𝑑 |𝑑⟩ (4.9)

where 𝛼𝑢 = ⟨𝑢 |𝜓 ⟩ and 𝛼𝑑 = ⟨𝑑 |𝜓 ⟩ are the probability amplitudes meeting the following
equation set: 

𝑝 (𝑢) = 𝛼†𝑢𝛼𝑢 = ⟨𝜓 |𝑢⟩ ⟨𝑢 |𝜓 ⟩
𝑝 (𝑑) = 𝛼†

𝑑
𝛼𝑑 = ⟨𝜓 |𝑑⟩ ⟨𝑑 |𝜓 ⟩

𝑝 (𝑢) + 𝑝 (𝑑) = 𝛼†𝑢𝛼𝑢 + 𝛼†𝑑𝛼𝑑 = 1
(4.10)

• state along the x-axis. According to the previous 90◦ SGA experiments, if SGA initially
prepares |𝑟 ⟩, and then is rotated to measure 𝜎𝑧 , there will be equal probabilities for 𝑢𝑝
and 𝑑𝑜𝑤𝑛. Thus, 𝛼†𝑢𝛼𝑢 and 𝛼†

𝑑
𝛼𝑑 must both be equal to 1

2 . A simple vector that satisfies
this rule is:

|𝑟 ⟩ = 1
√
2
|𝑢⟩ + 1

√
2
|𝑑⟩ (4.11)

Considering the exclusive constraints between 𝑟 and 𝑙 , i.e., ⟨𝑟 |𝑙⟩ = ⟨𝑙 |𝑟 ⟩ = 0, we have:

|𝑙⟩ = 1
√
2
|𝑢⟩ − 1

√
2
|𝑑⟩ (4.12)

• state along the y-axis. Represent spin states along the y-axis is more complicate be-
cause of the following constraints:

⟨𝑖 |𝑜⟩ = 0

⟨𝑖 |𝑢⟩ ⟨𝑢 |𝑖⟩ = 1
2
, ⟨𝑖 |𝑑⟩ ⟨𝑑 |𝑖⟩ = 1

2
⟨𝑜 |𝑢⟩ ⟨𝑢 |𝑜⟩ = 1

2
, ⟨𝑜 |𝑑⟩ ⟨𝑑 |𝑜⟩ = 1

2
⟨𝑖 |𝑙⟩ ⟨𝑙 |𝑖⟩ = 1

2
, ⟨𝑖 |𝑟 ⟩ ⟨𝑟 |𝑖⟩ = 1

2
⟨𝑜 |𝑙⟩ ⟨𝑙 |𝑜⟩ = 1

2
, ⟨𝑜 |𝑟 ⟩ ⟨𝑟 |𝑜⟩ = 1

2

(4.13)

From which a set of proper representation of state along the y-axis is{
|𝑖⟩ = 1√

2
|𝑢⟩ + 𝑖√

2
|𝑑⟩

|𝑜⟩ = 1√
2
|𝑢⟩ − 𝑖√

2
|𝑑⟩

(4.14)

Transition amplitude. Suppose the start state is |𝜓 ⟩ = [𝑐0, 𝑐1, · · · , 𝑐𝑛−1]⊤ the end state is
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|𝜓 ′⟩ = [𝑐′0, 𝑐′1, · · · , 𝑐′𝑛−1]⊤, the transition amplitude is defined as

⟨𝜓 ′ |𝜓 ⟩ =
[
𝑐′0, 𝑐

′
1, · · · , 𝑐′𝑛−1

] 
𝑐0
𝑐1
...

𝑐𝑛−1


=

𝑛−1∑
𝑘=0

𝑐′
𝑘
× 𝑐𝑘 (4.15)

where ⟨𝜓 ′ | = [𝑐′0, 𝑐′1, · · · , 𝑐′𝑛−1] is called the bra vector of the corresponding ket vector |𝜓 ′⟩.

We can represent the start state, the ending state, and the amplitude of going from the first
to the second as the decorated arrow:

|𝜓 ⟩
⟨𝜓 ′ |𝜓 ⟩

|𝜓 ′⟩ (4.16)

Note 4.1: Transition amplitude

The transition amplitude between two states may be zero. In fact, that happens precisely
when the two states are orthogonal to one another. This simple fact hints at the physical
content of orthogonality: orthogonal states are as far apart as they can possibly be. We
can think of them asmutually exclusive alternatives: for instance, an electron can be in an
arbitrary superposition of spin up and down, but after we measure it in the z direction, it
will always be either up or down, never both up and down.

We can express |𝜓 ⟩ in the orthonormal basis |𝑏0⟩ , |𝑏1⟩ , · · · , |𝑏𝑛−1⟩ as

|𝜓 ⟩ = 𝑏0 |𝑏0⟩ + 𝑏1 |𝑏1⟩ + · · · + 𝑏𝑛−1 |𝑏𝑛−1⟩ (4.17)

where the probability amplitude is also the transition amplitude, i.e., 𝑏 𝑗 = ⟨𝑏𝑘 |𝜓 ⟩, and that
|𝑏0 |2 + |𝑏1 |2 + · · · + |𝑏𝑛−1 |2 = 1.

4.2 Observables and Measuring

4.2.1 Basic concepts

Specification of a physical system: On the one hand, its state space, i.e., the collection
of all the states (discussed in the previous section), and on the other hand, observable set, i.e.,
the physical quantities observed in each state of the state space.

Observable: A specific question we pose to the system. For example, if the system is
currently in some given state |𝜓 ⟩, which values can we possibly observe?

Measuring: The process of asking a specific question and receiving a definite answer.

The measurement operations in classic and quantum physics are inherently different. Fig-
ure 4.8 shows two key differences.
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Classic physics

•   the act of measuring would 

not change the system state

Quantum physics

•   the act of measuring would 

change the system state

•   the result of a measurement 

on a well-defined state is 

deterministic 

•   the result of a measurement 

on a well-defined state is 

nondeterministic 

Figure 4.8: Comparisons of measurement operations in classic and quantum physics.

4.2.2 The principles

In this part, we present the five principles about the observing and measurement. The first
four principles do not involve the evolution of state-vectors with time.

• Principle 1: The observable or measurable quantities of quantum mechanics are repre-
sented by linear operators Ω, which must also be Hermitian3.

• Principle 2: The possible results of a measurement are the eigenvalues of the operator
that represents the observable. The collapsed state is the related eigenvector of the oper-
ator that represents the observable. If the system is in the eigenstate |𝜆𝑖⟩, the result of a
measurement is guaranteed to be 𝜆𝑖 .

Example 4.1: Positions on a line

In this example, the most obvious observable is position. As we have stated al-
ready, each observable represents a specific question we pose to the quantum sys-
tem. Position asks: Where can the particle be found? Which hermitian operator
corresponds to position? We are going to tell first how it acts on the basic states:

P(|𝜓 ⟩) = P( |𝑥𝑖⟩) = 𝑥𝑖 |𝑥𝑖⟩ (4.18)

Considering |𝑥𝑖⟩ = [0, · · · , 1, · · · , 0]⊤ is the one-hot vector with only the 𝑖-th ele-
ment equals to 1, we have

P =


𝑥0 0 · · · 0
0 𝑥1 · · · 0
...

...
. . .

...
0 0 · · · 𝑥𝑛−1


(4.19)

3 Two reasons why observable operators must be Hermitian: First, the eigenvalues of an operator are real, which
is a necessary condition of realistic experiment. Second, the eigenvectors that represent unambiguously distin-
guishable results must have different eigenvalues, and must also be orthogonal (see principle 2 and 3).
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Example 4.2: Single-particle spin system

Let’s recall the previous Stern-Gerlach experiment, in which a particle with vertical
upward spin passing through a z-axis-directional upward SGA generates “+1” ob-
servation value and its spin state is kept upward. Meanwhile, given a particle with
vertical downward spin, its SGA observation reads “-1” value and its spin state is
kept downward. Hence we have the following formulations:

𝜎𝑧 |𝑢⟩ = |𝑢⟩
𝜎𝑧 |𝑑⟩ = −1 |𝑑⟩
⟨𝑢 |𝑑⟩ = 0

(4.20)

Let |𝑢⟩ = [1, 0]⊤, |𝑑⟩ = [0, 1]⊤, and 𝜎𝑧 ∈ R2×2, the above set of equations can be
re-formulated and the matrix of x-axis spin operator 𝜎𝑥 can be calculated

[
(𝜎𝑧)11 (𝜎𝑧)12
(𝜎𝑧)21 (𝜎𝑧)22

] [
1
0

]
=

[
1
0

]
[
(𝜎𝑧)11 (𝜎𝑧)12
(𝜎𝑧)21 (𝜎𝑧)22

] [
0
1

]
= −

[
0
1

] ⇒ 𝜎𝑧 =

[
1 0
0 −1

]
(4.21)

Similarly, the matrices of x-axis spin operator 𝜎𝑥 and y-axis spin operator 𝜎𝑦 can
be written as

𝜎𝑥 =

[
0 1
1 0

]
and 𝜎𝑦 =

[
0 −𝑖
𝑖 0

]
(4.22)

Note 4.2: Measurement operator

There are some truths and misconception about the measurement operator:

Truths: (1) Operators are the things we use to calculate eigenvalues and eigenvec-
tors; (2) Operators act on state-vectors (which are abstract mathematical objects),
not on actual physical systems; (3) When an operator acts on a state-vector, it pro-
duces a new state-vector.

Misconception: When a measurement operator Ω acts on a state-vector, it pro-
duces a new state-vector, but that operation is in no way the same as acting on the
state with the operator Φ. The former, Ω |𝜓 ⟩, means a state collapse and the formu-
lation only valid when |𝜓 ⟩ is the eigenvector of Ω. The latter, Φ |𝜓 ⟩, is always valid
and means that a state transition from the original state |𝜓 ⟩ to a new state Φ |𝜓 ⟩.
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• Principle 3: Unambiguously distinguishable4 states are represented by orthogonal vec-
tors. Inner product of two states is a measure of the inability to distinguish them with
certainty.

• Principle 4: If |𝜓 ⟩ is the state-vector of a system, and the observable Ω is measured, the
probability to observe value 𝜆𝑖 is:

𝑝 (𝜆𝑖) = | ⟨𝜆𝑖 |𝜓 ⟩ |2 = ⟨𝜓 |𝜆𝑖⟩ ⟨𝜆𝑖 |𝜓 ⟩ (4.23)

But, in general, there is no way to tell for certain which of these values will be observed.
There is only a probability 𝑝 (𝜆𝑖), expressed in terms of the overlap of |𝜓 ⟩ and |𝜆𝑖⟩, de-
scribing that the outcome will be 𝜆𝑖 .

• Principle 5: The evolution of a quantum system (that is not a measurement) is given by
a unitary operator or transformation, i.e., |𝜓 (𝑡 + 1)⟩ = U |𝜓 (𝑡)⟩.

4.2.3 The expected value of observing

Suppose that 𝜆0, 𝜆1, · · · , 𝜆𝑛−1 is the list of eigenvalues of a measurement operator Ω. Let us
prepare our quantum system so that it is in state |𝜓 ⟩ and let us observe the value of Ω. We are
going to obtain one or another of the aforementioned eigenvalues. Now, let us start all over
again many times, say, 𝑛 times, and let us keep track of what was observed each time. At the
end of our experiment, the eigenvalue 𝜆𝑖 has been seen 𝑝𝑖 times, where 0 ≤ 𝑝𝑖 ≤ 𝑛 (in statistical
jargon, its frequency is 𝑝𝑖/𝑛). Now perform the calculation

𝜆0 ×
𝑝0
𝑛
+ 𝜆1 ×

𝑝1
𝑛
+ · · · + 𝜆𝑛−1 ×

𝑝𝑛−1
𝑛

(4.24)

If 𝑛 is sufficiently large, this number (known in statistics as the estimated expected value of Ω)
will be very close to ⟨Ω⟩𝜓 = ⟨Ω𝜓,𝜓 ⟩.

4.2.4 Multiple-step observing

Before we investigate the multiple-step observing, let’s first consider what happens after
single-step observing. Suppose the quantum system state is |𝜓 ⟩, and the observing operator is
Ω (with eigenvalues {𝜆𝑖} and corresponding eigenvectors {|𝜆𝑖⟩} as the previous section). After
one-step observing, we first get an answer 𝜆𝑖 with probability 𝑝𝑖 = ⟨𝜓 |𝜆𝑖⟩ ⟨𝜆𝑖 |𝜓 ⟩. Then, the
system’s state collapse from |𝜓 ⟩ to the corresponding eigenstate |𝜆𝑖⟩ as shown in Figure 4.9.

According to the above discussion, observing in the quantum world will necessarily lead
to state collapse. Hence, the result of multiple-step observing depends on the observing order.
Take Figure 4.10 as an example, given the quantum state |𝜓 ⟩, the result of two-step observing
of “Ω → Ω′” is zero, but if we insert an intermediate observing, i.e., Ω′′, then the result of
three-step observing of “Ω→ Ω′′ → Ω′” is not zero.
4 Two states are physically distinct if there is a measurement that can tell them apart without ambiguity. For
example, |𝑢⟩ and |𝑑⟩ can be distinguished by measuring 𝜎𝑧 . If you are handed a spin and told that it is either in
the state |𝑢⟩ or the state |𝑑⟩, to find out which of the two states is the right one, all you have to do is align SGA
with the z axis and measure 𝜎𝑧 .
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Figure 4.9: Illustration of single-step observing with probabilistic collapse under various mea-
surement operators Ω, Ω′, and Ω′′.

(1) (2) 

Figure 4.10: Order effects in the multiple-step observing.

4.3 Dynamics

The process of quantum computing can be generally divided into three steps:

(1) Prepare an initial state |𝜓 ⟩;

(2) Apply a sequence of unitary operators to the state (see Figure 4.11);

(3) Measure the output and get a final state.

Figure 4.11: Apply a sequence of unitary operators to the state.

Instructor: Chao Liang
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5 Quantum Gates

This section studies quantum gates. As the basis, we begin with bit and qubit. We then
discuss classical gates, reversible gates and quantum gates in turn. Last, we introduce the Bell
circuit and its two applications, i.e., superdense coding and quantum teleportation.

5.1 Bits andQubits

Definition 5.1 (Bit). A bit is a unit of information describing a two-dimensional classical system.

Since a two-dimensional classical system has two orthogonal states, hence the bit 0 and bit
1 can be represented as two 2 × 1 binary vectors, i.e.,

bit-0 =
[
1
0

]
and bit-1 =

[
0
1

]
(5.1)

where bit-0 and bit-1 equal to |0⟩ and |1⟩ for the convenience of the following discussion.

Definition 5.2 (Qubit). A quantum bit or a qubit is a unit of information describing a two-
dimensional quantum system.

Figure 5.1: Relation between qubit and bit.

The only difference between the above two definitions is the property of the two-dimensional
system. The former is a classic system, while the latter is a quantum system. This means that
the state of a qubit lies in the complex vector space satisfying the normalization constraint, i.e.,

|𝜑⟩ =
[
𝑐0
𝑐1

]
(5.2)

where |𝑐0 |2 + |𝑐1 |2 = 1. Whenever we measure a qubit, it automatically becomes a bit with
corresponding collapse probability of |𝑐0 |2 for bit 0 and |𝑐0 |2 for bit 1 as shown in Figure 5.1.
So we shall never “see” a general qubit.
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Definition 5.3 (Byte). The byte is a unit of digital information that most commonly consists of
eight bits.

For example, given a byte including eight bits 01101011, the vector representation of these
eight bits is: [1 0]⊤, [0 1]⊤, [0 1]⊤, [1 0]⊤, [0 1]⊤, [1 0]⊤, [0 1]⊤, [0 1]⊤. Recall the tensor product
in composite system, the state of a byte equals to |0⟩ ⊗ |1⟩ ⊗ |1⟩ ⊗ |0⟩ ⊗ |1⟩ ⊗ |0⟩ ⊗ |1⟩ ⊗ |1⟩,
which is a discrete element of the complex vector space C2 ⊗C2 ⊗C2 ⊗C2 ⊗C2 ⊗C2 ⊗C2 ⊗C2.

Definition 5.4 (Qubyte). The qubyte is a unit of quantum information that consists of eight
qubits.

Similar, the state of a qubyte is the tensor product of eight qubits, i.e., |𝜑0⟩ ⊗ |𝜑1⟩ ⊗ |𝜑2⟩ ⊗
|𝜑3⟩ ⊗ |𝜑4⟩ ⊗ |𝜑5⟩ ⊗ |𝜑6⟩ ⊗ |𝜑7⟩, wihch is a continues element of the complex vector space
C2 ⊗ C2 ⊗ C2 ⊗ C2 ⊗ C2 ⊗ C2 ⊗ C2 ⊗ C2.

Single (qu)bit Double (qu)bits Eight (qu)bits / (qu)byte

C
la

ss
ic

 b
it(

s)
Q

ua
nt

um
 b

it(
s)

Figure 5.2: State vectors of single (qu)bit, double (qu)bits and (qu)byte.

The state vectors of single (qu)bit, double (qu)bits and (qu)byte are shown in Figure 5.2.
Let’s compare the byte and qubyte, both of them are represented as a 256-dimensional vector.
But the former, classic byte, contains only 8 binary numbers, while the latter, quantum byte,
contains 28 = 256 complex numbers. This difference indicates qubyte is muchmore informative
than the classic byte.
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5.2 Classic Gates

Matrix representation. Classical logical gates are ways of manipulating bits. This section
studies classical gates from the point of view of matrices. As stated in Section 5.1, we represent
𝑛 input bits as a 2𝑛 × 1 vector and𝑚 output bits as a 2𝑚 × 1 vector. How should we represent
our logical gates? When one multiplies a 2𝑚 × 2𝑛 matrix with a 2𝑛 × 1 vector, the result is a
2𝑚 × 1 vector. In symbols:

(2𝑚 × 2𝑛)︸     ︷︷     ︸
gate

· (2𝑛 × 1)︸   ︷︷   ︸
input

= (2𝑚 × 1)︸    ︷︷    ︸
output

(5.3)

Example 5.1: NOT gate

Consider theNOTgate: 𝐴 𝑌

NOT gate takes as input one bit, or a 2×1 vector, and outputs one bit, or a 2×1 vector.
NOT of |0⟩ equals |1⟩ and NOT of |1⟩ equals |0⟩. Consider the matrix

NOT =

[
0 1
1 0

]
(5.4)

This matrix satisfies [
0 1
1 0

] [
1
0

]
=

[
0
1

]
and

[
0 1
1 0

] [
0
1

]
=

[
1
0

]
(5.5)

Example 5.2: AND gate

Consider theANDgate:
𝐴

𝐵
𝑌

The AND gate accepts two bits and outputs one bit, hence we need a 21 × 22 matrix.
Consider the matrix

AND =

[
1 1 1 0
0 0 0 1

]
(5.6)

This matrix satisfies AND |11⟩ = |1⟩ and AND |01⟩ = |0⟩

[
1 1 1 0
0 0 0 1

] 
0
0
0
1

 =

[
0
1

]
and

[
1 1 1 0
0 0 0 1

] 
0
1
0
0

 =

[
1
0

]
(5.7)
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Example 5.3: OR gate

Consider theOR gate:
𝐴

𝐵
𝑌

The OR gate similarly accepts two bits and outputs one bit, hence can be represented
by a 21 × 22 matrix.

AND =

[
1 0 0 0
0 1 1 1

]
(5.8)

This matrix satisfies OR |00⟩ = |0⟩ and AND |01⟩ = |1⟩

[
1 0 0 0
0 1 1 1

] 
1
0
0
0

 =

[
1
0

]
and

[
1 0 0 0
0 1 1 1

] 
0
1
0
0

 =

[
0
1

]
(5.9)

Example 5.4: NAND gate

Consider theNANDgate:
𝐴

𝐵
𝑌

The NAND gate similarly accepts two bits and outputs one bit, hence can be repre-
sented by a 21 × 22 matrix.

AND =

[
0 0 0 1
1 1 1 0

]
(5.10)

This matrix satisfies NOT × AND = NAND

NOT · AND =

[
0 1
1 0

] [
1 1 1 0
0 0 0 1

]
=

[
0 0 0 1
1 1 1 0

]
= NAND (5.11)

Sequential operation. The way of thinking of NAND brings to light a general situa-
tion. When we perform a computation, we often have to carry out one operation followed
by another. We call this procedure performing sequential operations. Take Figure 5.3a as an
example, if A an operation with𝑚 input bits and 𝑛 output bits, its matrix will be of size 2𝑛×2𝑚 .
Say, B takes the 𝑛 outputs of A as input and outputs 𝑝 bits, then B is represented by a 2𝑝 × 2𝑛
matrix, and performing one operation sequentially followed by another operation corresponds
to B × A, which is a (2𝑝 × 2𝑛) × (2𝑛 × 2𝑚) = (2𝑝 × 2𝑚) matrix.

Parallel operation. Besides sequential operations, there are parallel operations as shown
in Figure 5.3b. Here we have A acting on some bits and B on others. This will be represented
by A ⊗ B. Let us be exact with the number of inputs and the number of outputs. A will be of
size 2𝑛 × 2𝑚 . B will be of size 2𝑛′ × 2𝑚′ , A ⊗ B is of size 2𝑛2𝑛′ = 2𝑛+𝑛′ × 2𝑚2𝑚′ = 2𝑚+𝑚′ .
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gate input output

A Bm n p
Am n

Bm’ n’

(a) Sequential operation

gate input output

A Bm n p
Am n

Bm’ n’

(b) Parallel operation

A

B
n

p q

m-p

(c) Mixed operation

Figure 5.3: Sequential, parallel and mixed operations.

Mixed operation. Take Figure 5.3c as an example, let A be an operation that takes𝑛 inputs
and gives𝑚 outputs. Let B take 𝑝 < 𝑚 of these outputs and leave the other𝑚−𝑝 outputs alone.
B outputs 𝑞 bits. A is a 2𝑚 × 2𝑛 matrix. B is a 2𝑞 × 2𝑝 matrix. As nothing should be done to the
𝑚 − 𝑝 bits, we might represent this as the 2𝑚−𝑝 × 2𝑚−𝑝 identity matrix I𝑚−𝑝 . We do not draw
any gate for the identity matrix. The entire circuit can be represented by the following matrix:

(B ⊗ I𝑚−𝑝) × A (5.12)

Example 5.5: Example 1 for mixed operation

Consider the circuit:

This is represented by
OR × (NOT × AND) (5.13)

Let us see how the operations look like as matrices. We first calculate the parallel part:

NOT ⊗ AND =

[
0 1
1 0

]
⊗

[
1 1 1 0
0 0 0 1

]
=


0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1
1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0

 (5.14)

And then we calculate the whole circuit:

OR × (NOT ⊗ AND) =
[
0 0 0 0 1 1 1 0
1 1 1 1 0 0 0 1

]
(5.15)
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Example 5.6: Example 2 for mixed operation

Consider the circuit:

This is represented by
NOT × AND × (NOT ⊗ NOT) (5.16)

Let us see how the operations look like as matrices. We first calculate the parallel part:

NOT ⊗ NOT =

[
0 1
1 0

]
⊗

[
0 1
1 0

]
=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 (5.17)

And then we calculate the whole circuit NOT × AND × (NOT ⊗ NOT):

[
0 1
1 0

]
×

[
1 1 1 0
0 0 0 1

]
×


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 =

[
1 0 0 0
0 1 1 1

]
(5.18)

5.3 Reversible Gates

In the quantum world, all operations that are not measurements are reversible and are
represented by unitary matrices. The AND operation is not reversible. Given an output of |0⟩
from AND, one cannot determine if the input was |00⟩, |01⟩, or |10⟩. So from an output of the
AND gate, one cannot determine the input and hence AND is not reversible. In contrast, the
NOT gate and the identity gates are reversible.

Reversible gates have a history that predates quantum computing. In the 1960s, Rolf Lan-
dauer analyzed computational processes and showed that erasing information, as opposed to
writing information, is what causes energy loss and heat. This notion has come to be known
as the Landauers principle.

We have found that erasing information is an irreversible, energy-dissipating operation. In
the 1970s, Charles H. Bennett continued along these lines of thought. If erasing information
is the only operation that uses energy, then a computer that is reversible and does not erase
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would not use any energy. Bennett started working on reversible circuits and programs.

A reversible circuit has exactly as many outputs as inputs. Each input can be reconstructed
from the output; no bits are lost, so reversible circuits will not give off heat from bit loss.

5.3.1 CNOT gate

What examples of reversible gates are there? We have already seen that the identity gate
and NOT gates are reversible. What else is there? Consider the following controlled-NOT gate
shown in Figure 5.4 (a):

00

01

10

11

00 01 10 11

(a) Circuit of CNOT gate (b) Matrix of CNOT gate

(c) Series circuit of CNOT gates

Figure 5.4: The circuit (a), matrix (b), and reversion (c) of CNOT gate.

This gate has two inputs and two outputs. The top input is the control bit. It controls what
the output will be. If |𝑥⟩ = |0⟩, then the bottom output of |𝑦⟩ will be the same as the input. If
|𝑥⟩ = |1⟩, then the bottom output will be the opposite. If we write the top qubit first and then
the bottom qubit, then the controlled-NOT gate takes |𝑥,𝑦⟩ to |𝑥, 𝑥 ⊕ 𝑦⟩, where ⊕ is the binary
“exclusive or” operation. The matrix that corresponds to this reversible gate is shown in Figure
5.4 (b).

CNOT gate can be reversed by itself as shown in Figure 5.4 (c). State |𝑥,𝑦⟩ goes to |𝑥, 𝑥 ⊕ 𝑦⟩,
which further goes to |𝑥, 𝑥 ⊕ (𝑥 ⊕ 𝑦)⟩. This last state is equal to |𝑥, (𝑥 ⊕ 𝑥) ⊕ 𝑦⟩ because ⊕ is
associative. Because 𝑥 ⊕ 𝑥 is always equal to 0, this state reduces to the original |𝑥,𝑦⟩.
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5.3.2 Toffoli gate

Toffoli gate extends CNOTgate’s function by using two controlling bits. The bottom bit flips
only when both of the top two bits are in state |1⟩. We can write this operation as taking state
|𝑥,𝑦, 𝑧⟩ to |𝑥,𝑦, 𝑧 ⊕ (𝑥 ∧ 𝑦)⟩. The circuit and matrix representations of Toffoli gate is shown in
Figure 5.5 (a) and (b).

000 001 010 011

(a) Circuit of Toffoli gate (b) Matrix of Toffoli gate

(c) Combination circuit with three controlling bits

100 101 110 111

000

001

010

011

100

101

110

111

Figure 5.5: The circuit (a), matrix (b), and combination circuit (c) of Toffoli gate.

The NOT gate has no controlling bit, the CNOT gate has one controlling bit, and the Toffoli
gate has two controlling bits. We can go on with this by with the combination circuit shown
in Figure 5.5 (c).

One reason why the Toffoli gate is interesting is that it is universal. In other words, with
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(a) AND gate by Toffoli gate (b) NOT gate by Toffoli gate (c) fanout gate by Toffoli gate

Figure 5.6: AND gate (a), NOT gate (b), and fanout gate (c) by Toffoli gate.

copies of the Toffoli gate, we can make any logical gate. In order to see that the Toffoli gate is
universal, we will show that it can be used to make both the AND and NOT gates as shown in
Figure 5.6 (a) and (b). Specifically, the AND gate is obtained by setting the bottom |𝑧⟩ input to
|0⟩, and the bottom output will then be |𝑥 ∧ 𝑦⟩. The NOT gate is obtained by setting the top
two inputs to |1⟩, and bottom output will be | (1 ∧ 1) ⊕ 𝑧⟩ = |1 ⊕ 𝑧⟩ = |¬𝑧⟩.

Moreover, in order to construct all gates, we must also have a way of producing a fanout of
values. In other words, a gate is needed that inputs a value and outputs two of the same values.
This can be obtained by setting |𝑥⟩ to |1⟩ and |𝑧⟩ to |0⟩. This makes the output |1, 𝑦,𝑦⟩.

5.3.3 Fredkin gate

Another interesting reversible gate is the Fredkin gate. The Fredkin gate also has three
inputs and three outputs as shown in Figure 5.7 (a). The top |𝑥⟩ input is the control input. The
output is always the same |𝑥⟩. If |𝑥⟩ is set to |0⟩, then |𝑦′⟩ = |𝑦⟩ and |𝑧′⟩ = |𝑧⟩, i.e., the values
stay the same. If, on the other hand, the control |𝑥⟩ is set to |1⟩, then the outputs are reversed:
|𝑦′⟩ = |𝑧⟩ and |𝑧′⟩ = |𝑦⟩. In short, |0, 𝑦, 𝑧⟩ ↦→ |0, 𝑦, 𝑧⟩ and |1, 𝑦, 𝑧⟩ ↦→ |1, 𝑧,𝑦⟩.

The matrix that corresponds to the Fredkin gate is shown in Figure 5.7 (b), from which we
can see that the Fredkin gate is its own inverse. The Fredkin gate is also universal. By setting
|𝑦⟩ to |0⟩ as shown in Figure 5.7 (c). The NOT gate and the fanout gate can be obtained by
setting |𝑦⟩ to |1⟩ and |𝑧⟩ to |0⟩ as shown in Figure 5.7 (d).

So both the Toffoli and the Fredkin gates are universal. Not only are both reversible gates;
a glance at their matrices indicates that they are also unitary.

5.4 Quantum Gates

quantumgate is simply an operator that acts on qubits. Such operators will be represented
by unitary matrices.

We have already worked with some quantum gates such as the identity operator I, the
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000 001 010 011

(a) Circuit of Fredkin gate (b) Matrix of Fredkin gate

100 101 110 111

000

001

010

011

100

101

110

111

(c) AND gate by Fredkin gate (d) NOT gate by Fredkin gate

Figure 5.7: The circuit (a), matrix (b) of Fredkin gate and its functional equivalence to AND
gate (c), and NOT and fanout gate (d).

Hadamard gate H, the NOT gate, the CNOT gate, the Toffoli gate, and the Fredkin gate. What
else is there? Here we discuss some important quantum gates:

• Pauli matrices. They occur everywhere in quantum mechanics and quantum comput-
ing. Note that the X matrix is nothing more than our NOT matrix.

X =

[
0 1
1 0

]
, Y =

[
0 −𝑖
𝑖 0

]
, Z =

[
1 0
0 −1

]
(5.19)

• Square root of NOT. It is a one-qubit quantum gate and is denoted as
√
NOT. The

matrix representation of this gate is

√
NOT =

1
√
2

[
1 −1
1 1

]
(5.20)
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• Hardmard gates. It is defined as

H =

[ 1√
2

1√
2

1√
2
− 1√

2

]
(5.21)

The Hardmard gate has two important properties in quantum algorithm (see Example
??). First, we can transition into superposition from classic state through Hardmard gate.
Second, we can transition out of superposition without measurement with the help of
Hardmard gate.

• Phase shift gate. It is defined as

𝑅(𝜃 ) =
[
1 0
0 𝑒𝑖𝜃

]
(5.22)

This gate performs the following operation on an arbitrary qubit:

cos(𝜃 ′) |0⟩ + 𝑒𝑖𝜙 sin𝜃 ′ |1⟩ =
[
cos(𝜃 ′)
𝑒𝑖𝜙 sin𝜃 ′

]
↦→

[
cos(𝜃 ′)

𝑒𝑖 (𝜃+𝜙 ) sin𝜃 ′

]
(5.23)

This corresponds to a rotation that leaves the latitude alone and just changes the longi-
tude. The new state of the qubit will remain unchanged. Only the phase will change.

• Controlled-U gate. It is equivalent to an IFTHEN statement. If a certain (qu)bit is
true, then a particular operation should be performed, otherwise the operation is not
performed. For every 𝑛-qubit unitary operation U, we can create a unitary (𝑛 + 1)-qubit
operation controlled-U or 𝐶𝑈 :

𝐶𝑈 =


1 0 0 0
0 1 0 0
0 0 𝑎 𝑏
0 0 𝑐 𝑑

 (5.24)

• Deutsch gate. It is very similar to the Toffoli gate. If the inputs |𝑥⟩ and |𝑦⟩ are both
|1⟩, then the phase shift operation 𝑅(𝜃 ) will act on the |𝑧⟩ input. Otherwise, the |𝑧⟩ will
simply be the same as the |𝑧⟩. When 𝜃 is not a rational multiple of 𝜋 , 𝐷 (𝜃 ) by itself is
a universal three-qubit quantum gate. In other words, 𝐷 (𝜃 ) will be able to mimic every
other quantum gate.

Up to now, we have discussed classic gates, reversible gates and quantum gates. Their
relationship can be illustrated by the following Figure 5.8.

Instructor: Chao Liang
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AND, OR, XOR, …… 

NOT, 

CNOT,

Toffoli,

Fredkin,

……

Pauli, Square root of NOT, 

Hardmard, Phase shift, …… 

Classic Gates

Reversible Gates

Quantum Gates

Figure 5.8: The relation of various gates.
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6 Quantum Cryptography

Cryptography is the art of concealing message. The standard cryptography model is
shown in Figure 6.1.

plaintext ciphertext plaintext

sender

receiver

Figure 6.1: The standard cryptography model.

The whole procedure can be divided into two parts:

• Encoder (ENC) is responsible for encoding the input plaintext into ciphertext, which can
be formulated as ENC(𝑇, 𝐾𝐸) = 𝐸 where 𝑇 is the plaintext, 𝐾𝐸 is encryption key, and 𝐸
is the ciphertext.

• Decoder (DEC) is responsible for decoding the received ciphertext into plaintext, which
can be formulated as DEC(𝐸, 𝐾𝐷 ) = 𝑇 where 𝐾𝐷 is the decryption key.

DEC(ENC(𝑇, 𝐾𝐸), 𝐾𝐷 ) = 𝑇 means that as long as we use the right keys, we can always retrieve
the original message intact without any loss of information.

6.1 Classic Cryptography

6.1.1 Caesar cipher

In cryptography, a Caesar cipher1 (Figure 6.2a), also known as Caesar’s cipher, the shift
cipher, Caesar’s code or Caesar shift, is one of the simplest and most widely known encryption
techniques. It is a type of substitution cipher in which each letter in the plaintext is replaced
by a letter some fixed number of positions down the alphabet. As shown in Figure 6.2b, with a
left shift of 3, D would be replaced by A, E would become B, and so on. The method is named
after Julius Caesar, who used it in his private correspondence.

The essence of Caesar cipher is a simple linear mapping, which has high statistical corre-
lation between the letter in plaintext and that in the ciphertext. This means that by graphing

1https://en.wikipedia.org/wiki/Caesar_cipher
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the frequencies of letters in the ciphertext, and by knowing the expected distribution of those
letters in the original language of the plaintext, a human can easily spot the value of the shift
by looking at the displacement of particular features of the graph. This is known as frequency
analysis. As shown in Figure 6.2c, in the English language the plaintext frequencies of the let-
ters E, T, (usually most frequent), and Q, Z (typically least frequent) are particularly distinctive.

plaintext ciphertext plaintext

sender

receiver

(a) Caesar cipher

plaintext ciphertext plaintext

sender

receiver

(b) A mapping example of left shift of three

(c) Letter distribution in English

Figure 6.2: Caesar cipher’s device, scheme, and defect.

6.1.2 One-Time-Pad protocol

In cryptography, the one-time-pad (OTP) protocol2 is an encryption technique that cannot
be cracked, but requires the use of a single-use pre-shared key that is not smaller than the
message being sent. In this technique, a plaintext is paired with a random secret key (also
referred to as a one-time pad). Then, each bit or character of the plaintext is encrypted by
combining it with the corresponding bit or character from the pad using modular addition.

2https://en.wikipedia.org/wiki/One-time_pad
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Figure 6.3: The one-time-pad protocol.

In OTP protocol, both encryption and decryption end share the same key 𝐾 in the com-
munication process, which means 𝐾𝐸 = 𝐾𝐷 = 𝐾 . As shown in Figure 6.3, assume that both
encoder and decoder share the same working function ENC(𝑇, 𝐾) = DEC(𝑇, 𝐾) = 𝑇 ⊕ 𝐾 , than
the receiver can decode the ciphertext and get the original message as follows

DEC(ENC(𝑇, 𝐾𝐸), 𝐾𝐷 ) = DEC(𝑇 ⊕ 𝐾,𝐾)
= (𝑇 ⊕ 𝐾) ⊕ 𝐾
= 𝑇 ⊕ (𝐾 ⊕ 𝐾)
= 𝑇

(6.1)

The merit of OTP protocol is that it cannot be cracked, but meanwhile, it has two obvi-
ous drawbacks. First, the key in OTP must be longer than the message being sent, which is
extremely inconvenient in the transmission and storage process; Second, the key cannot be
re-used because of the risk of information leakage3.

6.1.3 Diffie-Hellman key exchange

To eliminate risks in the key distribution process, Whitfield Diffie and Martin Hellman
devised the Diffie-Hellman key exchange method to securely exchange cryptographic keys
over a public channel.

3The eavesdropper may infer part of the original message from the multiple intercepted ciphertext if the key is
reused because 𝐸1 ⊕ 𝐸2 = (𝑇1 ⊕ 𝐾) ⊕ (𝑇2 ⊕ 𝐾) = 𝑇1 ⊕ 𝐾 ⊕ 𝐾 ⊕ 𝑇2 = 𝑇1 ⊕ 𝑇2
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(a) An illustration example (b) A numerical example

Figure 6.4: Illustrative and numerical examples of Diffie-Hellman key exchange.

An analogy illustrates the concept of public key exchange by using colors instead of very
large numbers. As shown in Figure 6.4a, the Diffie-Hellman key exchange process begins by
having the two parties, Alice and Bob, publicly agree on an arbitrary starting color that does
not need to be kept secret. In this example, the color is yellow. Each person also selects a secret
color that they keep to themselves in this case, red and cyan. The crucial part of the process is
that Alice and Bob each mix their own secret color together with their mutually shared color,
resulting in orange-tan and light-blue mixtures respectively, and then publicly exchange the
two mixed colors. Finally, each of them mixes the color they received from the partner with
their own private color. The result is a final color mixture (yellow-brown in this case) that is
identical to their partner’s final color mixture.

The numerical example of the above colorization process is shown in Figure 6.4b. The
pigment mixing process is formulated as a classic trapdoor function, also dubbed as one-way
function, i.e., modular exponentiation 𝑓 (𝑥) = 𝑔𝑥𝑚𝑜𝑑𝑝 . The forward computation, from 𝑥 to
𝑓 (𝑥), is easy and fast, while the backward computation, from 𝑓 (𝑥) to 𝑥 , is extremely hard and
computationally prohibitive. In the table, 𝑎 and 𝑏 represent the secret color that Alice and Bob
keep to themselves at the beginning, 𝐴 and 𝐵 represent the publicly exchanged color, and 𝑠 is
the final shared color mixture. Thanks to the one-way property of the modular exponentiation,
even Eve got 𝐴 and 𝐵, he cannot recover 𝑎 and 𝑏, not to mention the exchanged key 𝑠 .

6.1.4 Public- and private-key cryptography

According to the availability of the encryption key, cryptography algorithm can be divided
into private-key cryptography and public-key cryptography (Figure 6.5).

private-key cryptography, or symmetric cryptography, uses the same cryptographic
keys for both the encryption of plaintext and the decryption of ciphertext. The keys, in practice,
represent a shared secret between two or more parties that can be used to maintain a private
information link (Figure 6.5a). The requirement that both parties have access to the secret
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(a) private-key cryptography (b) public-key cryptography

Figure 6.5: Diagrams of private-key cryptography and public-key cryptography.

key is one of the main drawbacks of symmetric-key encryption, in comparison to public-key
encryption. OTP protocal is a typical private-key algorithm.

Public-key cryptography, or asymmetric cryptography, is the field of cryptographic sys-
tems that use pairs of related keys. Each key pair consists of a public key and a corresponding
private key. Key pairs are generated with cryptographic algorithms based on mathematical
problems termed one-way functions. In a public-key encryption system, anyone with a public
key can encrypt a message, yielding a ciphertext, but only those who know the corresponding
private key can decrypt the ciphertext to obtain the original message (Figure 6.5b). Diffie-
Hellman key exchange belongs to the public-key cryptography.

The plus side of public-key cryptography is that it does have key distribution problem. In
contrast, the minus sides include: (1) the one-way property of trapdoor function is a tempo-
rary fact that may disappear in the future; (2) public-key cryptography is usually slower than
private-key cryptography.

Typical issues in classic cryptography include: (1) success communication; (2) intrusion
detection, i.e., Alice and Bob would like to determine whether Eve is, in fact, eavesdropping;
(3) authentication, i.e., we would like to ensure that nobody is impersonating Alice and sending
false messages.

6.2 Quantum Key Exchange

Due to the peculiar effect of quantum observation and measurement, eavesdropping in the
classical world has a very different manifestation from that in the quantum world. Specifically,
in the classic world, Eve can make copies of arbitrary portions of the encrypted bit stream,
and he can listen without affecting the bit stream. While in the quantum world, Eve cannot
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make perfect copies of the qubit stream because of the no-cloning theorem, and the very act
of measuring the qubit stream alters it.

6.2.1 The BB84 protocol

The first quantum key exchange protocol was introduced by Charles Bennett and Gilles
Brassard in 1984, and hence the name BB84.

Problem setting. Alices goal is to send Bob a key via a quantum channel. Just as in the
One-TimePad protocol, her key is a sequence of random (classical) bits obtained, perhaps, by
tossing a coin. Alice will send a qubit each time she generates a new bit of her key. But which
qubit should she send?

Plus and times bases. In this protocol, Alice will employ two different orthogonal bases
shown in Figure 6.6. The left part shows the “plus” basis whose formulation is

+ = {|→⟩ , |↑⟩} =
{
[1, 0]⊤, [0, 1]⊤

}
(6.2)

and the right part shows the “times” basis whose formulation is

× = {|↖⟩ , |↗⟩} =
{ 1
√
2
[−1, 1]⊤, 1

√
2
[1, 1]⊤

}
(6.3)

(a) The plus basis (b) The times basis

Figure 6.6: Two basis used in BB84.

Cross representation. The base vector in one basis can be linearly represented by base
vectors in another basis:

• |↖⟩ with respect to + will be 1√
2
|↑⟩ − 1√

2
|→⟩.

• |↗⟩ with respect to + will be 1√
2
|↑⟩ + 1√

2
|→⟩.

• |↑⟩ with respect to × will be 1√
2
|↗⟩ + 1√

2
|↖⟩.

• |→⟩ with respect to × will be 1√
2
|↗⟩ − 1√

2
|↖⟩.
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Mapping table. Alice translates her classic key bits into qubits according to a mapping
vocabulary shown in the following table. For example, in the + basis, a |→⟩ will correspond

State/Basis + ×
|0⟩ |→⟩ |↗⟩
|1⟩ |↑⟩ |↖⟩

to a |0⟩. If Alice wants to work in the × basis and wants to convey a |1⟩, she will send a |↖⟩.
Similarly, if Alice sends a |↑⟩ and Bob measures a |↑⟩ in the + basis, he should record a |1⟩.

BB84 protocol. There are totally 4 steps in the BB84 protocol:

step 1 (Alice)

• randomly determine classical bits to send

• randomly determine the bases to send bits

• send the bits in their appropriate basis

step 2 (Bob)

• randomly determine the bases to receive bits

• measure the qubit in those random bases
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When there is no eavesdropping, Bob has 100% probability to get the correct bit with
consistent bases, and 50% probability to get the correct bit with inconsistent bases.
Hence the expected correct rate (ECR) for Bob getting the correct bit is 1

2×1+
1
2×

1
2 = 75%.

When there is Eve bugging in, he reads the information that Alice transmits, and mean-
while, sneds that information onward to Bob. In this case, ECR changes into 3

4 ×
3
4 +

1
4 (

1
2 × 0 + 1

2 ×
1
2 ) = 62.5%. The first term means both Eve and Bob get the correct bit,

while the second term represents that Eve gets the wrong bit but Bob gets the right one.

The following Table gives another solution to calculate the ECR with eavesdropping,
where the first stage considers the operations of receiving basis and sending qubit of
Eve, and the second stage considers the receiving basis and bit of Bob.

Eve Bob

ProbabilityReceiving basis Sending qubit Receiving basis Receiving bit

(consistent to Alice) (consistent to Alice) (consistent to Eve) (consistent to Alice)

𝑃 (✓) = 1/2 𝑃 (✓) = 1
𝑃 (✓) = 1/2 𝑃 (✓) = 1 1

2 · 1 ·
[
1
2 · 1 +

1
2 ·

1
2

]
= 6

16
𝑃 (×) = 1/2 𝑃 (✓) = 1/2

𝑃 (×) = 1/2

𝑃 (✓) = 1/2
𝑃 (✓) = 1/2 𝑃 (✓) = 1 1

2 ·
1
2 ·

[
1
2 · 1 +

1
2 ·

1
2

]
= 3

16
𝑃 (×) = 1/2 𝑃 (✓) = 1/2

𝑃 (×) = 1/2
𝑃 (✓) = 1/2 𝑃 (✓) = 0 1

2 ·
1
2 ·

[
1
2 · 0 +

1
2 ·

1
2

]
= 1

16
𝑃 (×) = 1/2 𝑃 (✓) = 1/2

step 3 (Alice and Bob)

• publicly compare which basis they used at each step

• scratch out corresponding bits under different bases

step 4 (Bob)

• randomly chooses half of the 𝑛/2 bits

• publicly compares them with Alice

If ECR ≤ 1 − 𝜖 , Eve is listening, Alice and Bob scratch the whole sequence. Oth-
erwise, Alice and Bob scratch out the revealed test subsequence and keep the
remains as unrevealed secret private key.
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6.2.2 The B92 protocol

In the BB84 protocol, Alice had two distinct orthogonal bases at her disposal. It turns out
that the use of two different bases is redundant, provided one employs a slightly slicker means
of measuring. This simplification results in another quantum key distribution protocol, known
as B92, invented by Charles Bennett in 1992.

The non-orthogonal basis. Alice uses only one non-orthogonal basis

{|→⟩ , |↗⟩} =
{
[1, 0]⊤, 1

√
2
[1, 1]⊤

}
(6.4)

B92 protocol. There are totally 4 steps in the B92 protocol:

step 1 (Alice)

• randomly determine classical bits to send

• send the bits in the appropriate polarization

step 2 (Bob)

• randomly determine the bases to receive bits

• measure the qubit in those random bases
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– If Bob uses the + basis and observes a |↑⟩, then he knows that Alice must have
sent a |↗⟩ = |1⟩ because if Alice had sent a |→⟩, Bob would have received a
|→⟩.

– If Bob uses the + basis and observes a |→⟩, then it is not clear to him which
qubit Alice sent. She could have sent a |→⟩ but she could also have sent a
|↗⟩ that collapsed to a |→⟩. Because Bob is in doubt, he will omit this bit.

– If Bob uses the × basis and observes a |↖⟩, then he knows that Alice must
have sent a |→⟩ = |0⟩ because if Alice had sent a |↗⟩, Bob would have
received a |↗⟩.

– If Bob uses the × basis and observes a |↗⟩, then it is not clear to him which
qubit Alice sent. She could have sent a |↗⟩ but she could also have sent a
|→⟩ that collapsed to a |↗⟩. Because Bob is in doubt, he will omit this bit.

step 3 (Alice and Bob)

• Bob publicly tells Alice which bits were uncertain

• they both omit uncertain bits

step 4 (optional for intrusion detection)

• Bob randomly chooses half of the 𝑛/2 bits

• Bob publicly compares them with Alice

6.2.3 The EPR protocol

In 1991, Artur K. Ekert proposed a completely different type of quantum key distribution
protocol based on entanglement. In the chapter of composite system, we learned that we can
prepare a sequence of entangled pairs of qubits like |00⟩+|11⟩√

2
or |01⟩+|10⟩√

2
. For the discussion

convenience, we assume the pair of entangled qubits in the state of |00⟩+|11⟩√
2

.

step 1 (Alice and Bob)

• Both sides are each assigned one of each of the pairs of entangled qubits
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step 2 (Alice and Bob)

• separately choose a random sequence of bases

• measure their qubits in their chosen basis

step 3 (Alice and Bob)

• publicly compare what bases were used

• keep only those bits measured in the same basis

step 4 (optional for intrusion or disentangled detection)

• Bob randomly chooses half of the n/2 bits

• Bob publicly compares them with Alice

6.3 Quantum Teleportation

Quantum teleportation is the process by which the state of an arbitrary qubit is trans-
ferred from one location to another.

Canonical and non-canonical bases for a single qubit. When working with a single
qubit, we worked with the canonical basis, {|0⟩ , |1⟩} and non-canonical basis, { |0⟩+|1⟩√

2
, |0⟩− |1⟩√

2
},

as shown in Figure 6.7.
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(a) The canonical base (b) The non-canonical base

Figure 6.7: Canonical and non-canonical basis used in the quantum teleportation.

Canonical and non-canonical bases for two qubits. The teleportation algorithm will
work with two entangled qubits, one held by Alice and one held by Bob. The obvious canonical
basis for this four-dimensional space is:

{|0𝐴0𝐵⟩ , |0𝐴1𝐵⟩ , |1𝐴0𝐵⟩ , |1𝐴1𝑏⟩} (6.5)

A non-canonical basis, called the Bell basis in honor of John Bell, consists of the following four
vectors:

|Ψ+⟩ = |0𝐴1𝐵⟩ + |1𝐴0𝐵⟩√
(2)

, |Ψ−⟩ = |0𝐴1𝐵⟩ − |1𝐴0𝐵⟩√
(2)

,

|Φ+⟩ = |0𝐴0𝐵⟩ + |1𝐴1𝐵⟩√
(2)

, |Φ−⟩ = |0𝐴0𝐵⟩ − |1𝐴1𝐵⟩√
(2)

(6.6)

Every vector in this basis is entangled.

Bell circuit. How to derive the Bell basis? In the single qubit (two-dimensional) case, the
elements of the noncanonical basis can be formed using the Hadamard matrix:

H |0⟩ = |0⟩ + |1⟩√
2

and H |1⟩ = |0⟩ − |1⟩√
2

(6.7)

In the two qubits (four-dimensional) case, the elements of the non-canonical basis are de-
rived from Bell circuit:

H

From which, we have |00⟩ ↦→ |Φ+⟩, |10⟩ ↦→ |Φ−⟩, |01⟩ ↦→ |Ψ+⟩, |11⟩ ↦→ |Ψ−⟩.
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Example 6.1: |00⟩ ↦→ |Φ+⟩

CNOT · (H |0⟩ ⊗ |0⟩) = CNOT · ( |0⟩ + |1⟩√
2
⊗ |0⟩)

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ·
1
√
2


1
0
1
0

 =
1
√
2


1
0
0
1

 =
|00⟩ + |11⟩
√
2

= |Φ+⟩
(6.8)

Quantum teleportation protocol. The whole protocol contains 5 steps:

step 1 : Alice has a qubit |𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩.

step 2 : prepare two entangled quibit A and B

• two entangled quibits are formed as |Φ+⟩

• one is given to Alice and one is given to Bob

H

|𝜑0⟩ = |𝜓 ⟩ ⊗ |0𝐴⟩ ⊗ |0𝐵⟩ = |𝜓 ⟩ |0𝐴0𝐵⟩

|𝜑1⟩ = |𝜓 ⟩ ⊗
|0𝐴⟩ + |1𝐴⟩√

2
⊗ |0𝐵⟩

|𝜑2⟩ = |𝜓 ⟩ ⊗ |Φ+⟩ = |𝜓 ⟩ ⊗
|0𝐴0𝐵⟩ + |1𝐴1𝐵⟩√

2

= (𝛼 |0⟩ + 𝛽 |1⟩) ⊗ |0𝐴0𝐵⟩ + |1𝐴1𝐵⟩√
2

=
𝛼 |⟩ ( |0𝐴0𝐵⟩ + |1𝐴1𝐵⟩) + 𝛽 |1⟩ (|0𝐴0𝐵⟩ + |1𝐴1𝐵⟩)√

2

(6.9)

step 3 : Alice lets her |𝜓 ⟩ interact with her entangled qubit
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|𝜑2⟩ =
𝛼 |0⟩ (|0𝐴0𝐵⟩ + |1𝐴1𝐵⟩) + 𝛽 |1⟩ (|0𝐴0𝐵⟩ + |1𝐴1𝐵⟩)√

2

|𝜑3⟩ =
𝛼 |0⟩ (|0𝐴0𝐵⟩ + |1𝐴1𝐵⟩) + 𝛽 |1⟩ (|1𝐴0𝐵⟩ + |0𝐴1𝐵⟩)√

2

|𝜑4⟩ =
1
2
(𝛼 ( |0⟩ + |1⟩)(|0𝐴0𝐵⟩ + |1𝐴1𝐵⟩) + 𝛽 (|0⟩ − |1⟩)(|1𝐴0𝐵⟩ + |0𝐴1𝐵⟩))

=
1
2
(𝛼 ( |000⟩ + |011⟩ + |100⟩ + |111⟩) + 𝛽 ( |010⟩ + |001⟩ − |110⟩ − |101⟩))

=
1
2
[|00⟩ (𝛼 |0⟩ + 𝛽 |1⟩) + |01⟩ (𝛽 |0⟩ + 𝛼 |1⟩)

+ |10⟩ (𝛼 |0⟩ − 𝛽 |1⟩) + |11⟩ (−𝛽 |0⟩ + 𝛼 |1⟩)]

(6.10)

step 4 : Alice makes a measurement

• Alice measures her two qubits

• Alice determines to which of the four possible states the system collapses

step 5 : Bob performs the corresponding transformation based on Alice’s observations

• Alice sends copies of her two bits (not qubits) to Bob

• Bob uses that information to achieve the desired state
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Example 6.2: Bob’s transformation when Alice observes |10⟩

[
1 0
0 −1

] [
𝛼
−𝛽

]
=

[
𝛼
𝛽

]
= 𝛼 |0⟩ + 𝛽 |1⟩ = |𝜓 ⟩ (6.11)

The whole framework of the quantum teleportation protocol is shown in Figure 6.8. Several
points should be made about this protocol:

• Alice is no longer in possession of |𝜓 ⟩. She has only two classical bits.

• As we have seen, to teleport a single quantum particle, Alice has to send two classical
bits. Without receiving them, there is no way that Bob can know what he has. These
classical bits travel along a classical channel and thus they propagate at finite speed (less
than the speed of light). Entanglement, in spite of its undisputable magic, does not allow
you to communicate faster than the speed of light.

• Information teleported from Alice to Bob via qubit is infinite, but it is useless to Bob once
he make the measurement (qubit will collapse to a classic bit).

• no particle has been moved at all, only the state.

Prepare two entangled qubits A and B

Alice controls 
A with target 
quantum bits

Alice 
conducts 
observation 
on her two 
quantum 
bits

Bob transforms his quantum bits 
accordingly to Alice's observations

Figure 6.8: The framework of quantum teleportation protocol.

Instructor: Chao Liang
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